مشخصات مقاله | |
ترجمه عنوان مقاله | یک طرح معتبر برای تصمیم گیری چند معیاره هوشمند و مؤثر |
عنوان انگلیسی مقاله | A validation scheme for intelligent and effective multiple criteria decision-making |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 17 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله | مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) | 3.907 (2017) |
شاخص H_index | (2018) 97 |
شاخص SJR | (2018) 1.199 |
رشته های مرتبط | مدیریت |
گرایش های مرتبط | تحقیق در عملیات، مدیریت فناوری اطلاعات |
نوع ارائه مقاله | ژورنال |
مجله / کنفرانس | محاسبات نرم کاربردی – Applied Soft Computing |
دانشگاه | Department of Business Administration – Soochow University – Taiwan |
کلمات کلیدی | روش نظری پیش بینی خطی تکی؛ روند سلسله مراتب تحلیلی؛ تکنیک برای ترجیح سفارش با شباهت به راه حل ایده آل؛ VIKOR؛ ELECTRE |
کلمات کلیدی انگلیسی | Piecewise linear prospect (PLP) theory method; analytic hierarchy process (AHP); technique for order preference by similarity to ideal solution (TOPSIS); VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR); elimination et choix traduisant la realité (ELECTRE) |
شناسه دیجیتال – doi |
http://dx.doi.org/doi:10.1016/j.asoc.2017.04.054 |
کد محصول | E9328 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract |
بخشی از متن مقاله: |
Introduction The Industry 4.0 proposal has been driving the fourth technological revolution based on the concepts and technologies of cyber-physical systems and the Internet of things for developing the new German economic policy [1–3]. Among the key development directions, the more decentralized self-organization and adaptation to human needs have triggered developing methodologies, methods of modeling, and data models and exchange formats for smarter production [1]. Owing to the changes and decomposition of conventional production hierarchy and the broader coverage of responses to strategic objectives and customer preferences from the operational-level decisions, more effective multiple criteria decision-making and soft computing techniques and their integration are largely demanded for achieving autonomous and automatic decisional intelligence [4–6]. Although studies have developed numerous novel multiple criteria decision-making (MCDM) methods and integrations of existing ones for specific problems, their validation and verifications are mostly within the scope of efficiency comparisons, consistency tests, or cross examinations with real cases [7–13]. However, the essential questions of how to evaluate the selection of appropriate MCDM methods are not well addressed. In particular, identifying the true preferred alternative is the most difficult part of validating MCDM methods. Validating MCDM methods through interaction with decision-makers is challenging. Discovering and applying suitable metrics help to clarify decision-makers’ true preferences. Multiple criteria are particularly difficult to evaluate when decision-makers use different units. The normalization and aggregation process influences the stability of results and can lead to rank reversals (i.e., adding new alternatives or deleting alternatives may change the original ranks [14]), especially with multiple decision-makers. Self-inconsistency or cognitive bias during the preference elicitation process causes rank reversals [15,16]. In these cases, the decision quality is unsatisfactory and the optimal alternative may not be presented. Furthermore, inappropriate use of MCDM methods results in rank reversals. Therefore, understanding the influence of cognitive bias on various MCDM methods and debiasing on the basis of statistical rank tests are important. In short, this study aims to develop a validation scheme that can be commonly used to compare effectiveness of various MCDM methods. To show the viability of the proposed validation scheme, this study illustrate the evaluation and comparisons among common MCDM methods. In the validation scheme, the impact of control variables, such as the existence of efficient solutions, normalization methods, aggregation methods, and degree of interaction with decision-makers, on the MCDM validity is also investigated. The remainder of this paper is organized as follows. Section 2 presents a review of the literature on MCDM methods. Section 3 develops a validation scheme for examining effective of MCDM methods. Section 4 illustrates the proposed validation schedule with comparisons among common MCDM methods and discusses the implications. Section 5 concludes with discussions on future research directions. |