مشخصات مقاله | |
ترجمه عنوان مقاله | آنالیز حداقل مربعات تصحیح شده برای مدل رگرسیون خطی عملکردی |
عنوان انگلیسی مقاله | Analysis of regularized least squares for functional linear regression model |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 15 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله | مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) | 1.174 در سال 2017 |
شاخص H_index | 45 در سال 2018 |
شاخص SJR | 0.933 در سال 2018 |
رشته های مرتبط | آمار |
گرایش های مرتبط | آمار ریاضی |
نوع ارائه مقاله | ژورنال |
مجله / کنفرانس | مجله پیچیدگی – Journal of Complexity |
دانشگاه | University of International Business and Economics – China |
کلمات کلیدی | حداقل مربعات منظم، رگرسیون خطی تابعی، فضای هیلبرت با هسته بازآفرین، میزان یادگیری |
کلمات کلیدی انگلیسی | Regularized least squares, Functional linear regression, Reproducing kernel Hilbert space, Learning rate |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jco.2018.08.001 |
کد محصول | E9545 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1 Introduction 2 The regularization model 3 The analysis 4 Concluding remarks References |
بخشی از متن مقاله: |
Abstract
In this paper, we study and analyze the regularized least squares for functional linear regression model. The approach is to use the reproducing kernel Hilbert space framework and the integral operators. We show with a more general and realistic assumption on the reproducing kernel and input data statistics that the rate of excess prediction risk by the regularized least squares is minimax optimal. Introduction There are increasing cases in practice where the data are collected in the form of random functions or curves. This type of data is becoming more prevalent throughout science, engineering and financial market, as automated on-line data collection facilities are becoming more ubiquitous. Many classical statistical tools and models for multivariate analysis, such as principal components analysis, canonical correlation analysis and linear model are then extended to the infinite-dimensional functional domain. In this paper, we consider the functional linear model where Y is a scalar response, X : I → R is a square integrable functional predictor defined over compact domain I ⊂ R, α0 is the intercept, β0 : I → R is the slope function. and is the random noise with mean 0 and finite variance σ 2 . Functional linear model was introduced by J.O. Ramsay and C.J. Dalzell [11] and first written in its commonly encountered form (1) by T. Hastie and C. Mallows [7]. Some recent research on the statistical analysis of (1) includes [2, 3, 6, 15, 16]. In this paper, we focus on the random design where X is a path of a square integrable stochastic process defined over I and is independent of . Without loss of much generality, throughout the paper we assume E(X) = 0 and the intercept α0 = 0, since the intercept can be easily estimated. Let L 2 be the Hilbert space of square integrable functions on I (with respect to Lebesgue measure) with standard inner production < u, v >= R I u(s)v(s)ds and norm kuk = R I u 2 (s)ds1/. |