مشخصات مقاله | |
ترجمه عنوان مقاله | سیگنال بیوالکتریک در بازسازی: مکانیسم کنترل یونیک رشد و فرم |
عنوان انگلیسی مقاله | Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 13 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله مروری (review article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR – MedLine |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.262 در سال 2017 |
شاخص H_index | 204 در سال 2018 |
شاخص SJR | 2.087 در سال 2018 |
رشته های مرتبط | مهندسی پزشکی |
گرایش های مرتبط | بیوالکتریک |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | زیست شناسی تکوینی – Developmental Biology |
دانشگاه | Allen Discovery Center – Tufts University – United States |
کلمات کلیدی | بیوالکتریک، کانال یونی، پتانسیل ساکن، ولتاژ، الگوسازی |
کلمات کلیدی انگلیسی | Bioelectricity, Ion channel, Resting potential, Voltage, Patterning |
شناسه دیجیتال – doi |
http://dx.doi.org/10.1016/j.ydbio.2017.08.032 |
کد محصول | E9889 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Highlights Abstract Keywords 1 Introduction 2 What is developmental bioelectricity? 3 Over a century of observations in developmental bioelectricity – a historical perspective 4 Cell-level control of behavior by ion-mediated processes 5 Tissue-level pre-patterns mediated by bioelectric control mechanisms 6 Patterning and morphogenesis of tissues and organs: bioelectric inputs 7 Axial patterning 8 Ion flux and control of the size of structures 9 Bioelectric cues in plants 10 Molecular mechanisms 11 Conclusions and next steps Acknowledgements References |
بخشی از متن مقاله: |
ABSTRACT
The ability to control pattern formation is critical for the both the embryonic development of complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial development of structures, they also enable the robust restoration of normal pattern after injury. In order to expand our basic understanding of morphogenetic processes responsible for the repair of complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and electric fields. In complement to the current focus on molecular genetics, decoding the information transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and pattern formation. Recent advances in science and technology place us in an exciting time to elucidate the interplay between molecular-genetic inputs and important biophysical cues that direct the creation of tissues and organs. Moving forward, these new insights enable additional approaches to direct cell behavior and may result in profound advances in augmentation of regenerative capacity. Introduction A critical goal of regenerative biology and medicine is to understand and control the mechanisms underlying the processes directing growth and patterning. Alongside conventionally-studied transcriptional networks and chemical cues, additional inputs enable cells to cooperate and make decisions necessary for the repair and remodeling of complex anatomical structures. Endogenous ion flows serve as important regulators of cell behavior, coordinating cell activity during pattern homeostasis. Located within cell membranes, ion channels, pores, and pumps create a complex language of bioelectric signals that is tightly integrated with gene regulatory networks to direct cell behavior toward the creation and maintenance of functional tissues and organs. Here we discuss the known roles of ion-based physiological processes in directing cell behavior during pattern formation and regeneration. Specifically excluded in this review are the fast-acting action potentials associated with neurons and muscle cells, externally-applied electromagnetic fields and radiation, and ultra-weak photon emission. |