مقاله انگلیسی رایگان در مورد انعطاف پذیری سیستم های فیزیکی سایبری تحت حملات منع سرویس – الزویر 2018

 

مشخصات مقاله
ترجمه عنوان مقاله کنترل رویداد دوره ای راه اندازی شده برای انعطاف پذیری سیستم های فیزیکی سایبری تحت حملات منع سرویس
عنوان انگلیسی مقاله Periodic event-triggered resilient control for cyber-physical systems under denial-of-service attacks
انتشار مقاله سال 2018
تعداد صفحات مقاله انگلیسی 18 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
3.576 در سال 2017
شاخص H_index 64 در سال 2018
شاخص SJR 1.322 در سال 2018
رشته های مرتبط مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط امنیت اطلاعات و شبکه های کامپیوتری
نوع ارائه مقاله
ژورنال
مجله / کنفرانس مجله موسسه فرانکلین – Journal of the Franklin Institute
دانشگاه College of Information Science and Engineering – Northeastern University – China
کلمات کلیدی سیستم های سایبر-فیزیکی؛ کنترل رویداد-رهاشدگی دوره ای؛ حمله منع سرویس، ثبات ورودی به حالت
کلمات کلیدی انگلیسی Cyber-physical systems; periodic event-triggered control; denial-of-service attack; input-to-state stability
شناسه دیجیتال – doi
https://doi.org/10.1016/j.jfranklin.2018.06.009
کد محصول E10158
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
1 Introduction
2 Preliminaries and problem statement
3 Stability analysis of PETC strategy
4 Resilient control under DoS attacks
5 Simulation examples
6 Conclusions
Acknowledgment
References

بخشی از متن مقاله:
Abstract

This paper studies the problem of designing a resilient control strategy for cyber-physical systems (CPSs) under denial-of-service (DoS) attacks. By constructing an H∞ observer-based periodic event-triggered control (PETC) framework, the relationship between the event-triggering mechanism and the prediction error is obtained. Then, inspired by the maximum transmission interval, the input-to-state stability of the closed-loop system is proved. Compared with the existing methods, a Zeno-free periodic PETC scheme is designed for a continuous-time CPS with the external disturbance and measurement noise. In particular, the objective of maximizing the frequency and duration of the DoS attacks is achieved without losing robustness. Finally, two examples are given to verify the effectiveness of the proposed approach.

Introduction

In recent years, cyber-physical systems (CPSs) have been widely used in various engineering fields owing to advances in computing and communication technologies. However, the use of networks and heterogeneous digital elements has made these CPSs vulnerable to various cyber attacks, such as deception attacks, replay attacks, bias injection attacks, zero-dynamics attacks, denial-of-service (DoS) attacks and so on. Unlike traditional systems where attacks limit their impact to the cyber level, malicious attacks to CPSs can impact the physical world [1].Thus these is a strong demand for analysis, synthesis and design methods to guarantee the security and reliability of CPSs despite the presence of malicious attacks[2, 3]. Among the various malicious attacks, DoS attacks make the actuator and sensor data to be blocked rather than reach their respective destinations and lead to the absence of data for the related components. Such kind of attack is very common in network communications, and a lot of works have been made for the CPSs under DoS attacks [4–8]. A basic research field on security problem of CPSs is the stability analysis under DoS attacks. In [9], the authors characterize frequency and duration of the DoS attacks under which input-to-state stability of the closed-loop system can be presented, and the transmission times is scheduled. A resilient control method is presented in [10] to maximize frequency and duration of the DoS attacks under which closed-loop stability is not destroyed. In [11], based on the studies on [10], a control architecture that approximate co-location while enable remote implementation is designed. The input-to-state stable (ISS) control problem for CPSs with multiple transmission channels under DoS attacks is concerned in [12]. In [13], a systematic design framework for output-based dynamic event-triggered control (ETC) systems under DoS attacks is proposed for a class of nonlinear systems using a hybrid model. The traditional control methods are implemented in a time-triggered method where the sampling and the signal transmission are executed periodically, such as sampled-data control [14]. Usually, the wireless communication units of CPSs are power restricted, and the network is often shared with multiple devices. Hence communication resource utilization is needed to be considered. ETC scheme which helps reduce the network utilization has been widely investigated on networked control systems [15–19]. In [20], a state-dependent triggering method is proposed for network-based interconnected systems with delays and packet losses. In [21], periodic event-triggered control (PETC) strategy for linear systems is proposed. By combining time-triggered control and ETC, the event-triggering condition is verified periodically in PETC, and whether or not to compute or to transmit new measurements and control signals is decided at every periodic sampling instant. In [22], a model-based PETC strategy for linear discrete systems is presented, and both sensor-to-controller channels and the controller-to-actuator channels of the systems are communicated through networks. However, the ETC scheme for CPSs under DoS attacks has not been fully investigated. On the other hand, the DoS attacks occurred at the event-triggering intervals are invalid, thus the tolerable DoS attacks can be increased by using the ETC strategy. These are the major motivations of this study.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا