مقاله انگلیسی رایگان در مورد تحلیل کلان داده جهت بینش بزرگ برای ایجاد ارزش – الزویر 2018

 

مشخصات مقاله
ترجمه عنوان مقاله نظرسنجی به منظور ادغام تحلیل کلان داده جهت بینش بزرگ برای ایجاد ارزش
عنوان انگلیسی مقاله A survey towards an integration of big data analytics to big insights for value-creation
انتشار مقاله سال 2018
تعداد صفحات مقاله انگلیسی 33 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
3.444 در سال 2017
شاخص H_index 84 در سال 2018
شاخص SJR 0.92 در سال 2018
رشته های مرتبط مهندسی صنایع، مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط داده کاوی، هوش مصنوعی، مدیریت سیستم های اطلاعات
نوع ارائه مقاله
ژورنال
مجله / کنفرانس پردازش اطلاعات و مدیریت – Information Processing and Management
دانشگاه Department of Computer Science – Thapar – University Patiala – India
کلمات کلیدی کلان داده، تحلیل داده ها، یادگیری ماشین، تجسم داده های بزرگ، تصمیم گیری، کشاورزی هوشمند، برنامه شهر هوشمند، ایجاد ارزش، ارزش اکتشاف، تحقق ارزش
کلمات کلیدی انگلیسی Big data, Data analytics, Machine learning, Big data visualization, Decision-making, Smart agriculture, Smart city application, Value-creation, Value-discover, Value-realization
شناسه دیجیتال – doi
https://doi.org/10.1016/j.ipm.2018.01.010
کد محصول E10175
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
Keywords
1 Introduction and motivation
2 A glimpse of big data research method: systematic mapping process
3 Big data analytics & decision-making framework (BDA-DMF)
4 Big data management
5 Big data analytics
6 Visualization
7 BDA & decision-making framework for value-creation
8 Conclusions and research directions
Appendix A. Overview of machine learning tool for big data analytics
References

بخشی از متن مقاله:
ABSTRACT

Big Data Analytics (BDA) is increasingly becoming a trending practice that generates an enormous amount of data and provides a new opportunity that is helpful in relevant decisionmaking. The developments in Big Data Analytics provide a new paradigm and solutions for big data sources, storage, and advanced analytics. The BDA provide a nuanced view of big data development, and insights on how it can truly create value for firm and customer. This article presents a comprehensive, well-informed examination, and realistic analysis of deploying big data analytics successfully in companies. It provides an overview of the architecture of BDA including six components, namely: (i) data generation, (ii) data acquisition, (iii) data storage, (iv) advanced data analytics, (v) data visualization, and (vi) decision-making for value-creation. In this paper, seven V’s characteristics of BDA namely Volume, Velocity, Variety, Valence, Veracity, Variability, and Value are explored. The various big data analytics tools, techniques and technologies have been described. Furthermore, it presents a methodical analysis for the usage of Big Data Analytics in various applications such as agriculture, healthcare, cyber security, and smart city. This paper also highlights the previous research, challenges, current status, and future directions of big data analytics for various application platforms. This overview highlights three issues, namely (i) concepts, characteristics and processing paradigms of Big Data Analytics; (ii) the state-of-the-art framework for decision-making in BDA for companies to insight value-creation; and (iii) the current challenges of Big Data Analytics as well as possible future directions.

Introduction and motivation

The notion of Big Data Analytics (BDA) is driven by underpinning new waves of innovation, analytic services with intelligence and stirring advances in technology over the last few decades. The emergence applications of BDA have prompted the attention of many academic researchers, industry practitioners, and government organizations. It is a technology-driven ecosystem, where better decision-making will help many organizations to extract knowledge from data in an interpretable and appropriate form. Strawn (2012), described Big Data as “fourth paradigm of science”, whereas (Hagstrom, 2012) defined it as “new paradigm of knowledge assets”, or “the next frontier for innovation, competition, and productivity” (Manyika et al., 2011). Gantz and Reinsel, (2011) defined Big Data as “a new generation of technologies and architectures, designed to economically extract value from very large volumes of a wide variety of data, by enabling the high-velocity capture, discovery, and analysis”. It was described an integrated approach to organize, process, analyze the six characteristics (namely volume, variety, velocity, veracity, valence, and value). BDA is used to generate action for delivering the insights, value, measuring performance, and establishing competitive advantages (Wamba, Akter, Edwards, Chopin, & Gnanzou, 2015). The paper by (De Mauro, Greco, & Grimaldi, 2016) defined that “Big Data is the information asset characterized by such a high volume, velocity, and variety to require specific technology and analytical methods for its transformation into value” . The BDA, as a scientific topic of investigation, provides some significant and insightful readings that are discovered by various researchers. However, it is still needed to carryout the systematic review of innovative analytical methods, techniques, and tools for making insightful decisions in various domains. Indeed, it became a key component of decision-making processes in business (Hagel, 2015). The big data and advanced data analytics techniques can be used for the development of analytical and computational models (Iqbal, Doctor, More, Mahmud, & Yousuf, 2017). There are still several research interest how to develop the infrastructure, apply various data mining and machine learning algorithms in different domains. The BDA is concerned with modern statistical and machine learning techniques to analyze huge amount of data (Suthaharan, 2014). The researchers suggested that Big Data Analytics and deep learning have the potential to provide new generation applications based on modeling and simulation (Chen & Lin, 2014; Tolk, 2015). The traditional tools are not able to address the issues of scalability, adaptability, and usability, whereas such issues are critical to its success as they influence how big data is developed, managed and analyzed. The BDA is categorized by the requirement of advanced data acquisition, data storage, data management, data analysis, and visualization.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا