مقاله انگلیسی رایگان در مورد معماری کامپیوتر و محاسبات با کارایی بالا – الزویر 2018

 

مشخصات مقاله
ترجمه عنوان مقاله موضوع ویژه در مورد معماری کامپیوتر و محاسبات با کارایی بالا
عنوان انگلیسی مقاله Special issue on Computer Architecture and High Performance Computing
انتشار مقاله سال 2018
تعداد صفحات مقاله انگلیسی 1 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
Editorial
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
1.815 در سال 2017
شاخص H_index 70 در سال 2018
شاخص SJR 0.502 در سال 2018
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط معماری کامپیوتری
نوع ارائه مقاله
ژورنال
مجله / کنفرانس مجله محاسبات موازی و توزیع شده – Journal of Parallel and Distributed Computing
شناسه دیجیتال – doi
https://doi.org/10.1016/j.jpdc.2018.07.016
کد محصول E10198
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

 

بخشی از متن مقاله:
This special issue is focused on Computer Architecture and High Performance Computing. It also includes extended papers presented at SBAC-PAD 2016, 28th International Symposium on Computer Architecture and High Performance Computing, which took place in Los Angeles, USA, from October 26–28, 2016. All submitted papers to this special issue were rigorously reviewed by at least three expert reviewers, and further carefully evaluated by the guest editors. After the review process, only 9 papers were finally accepted for publication. Below, we provide an overview of the papers appearing in this volume. In ‘‘Janus: Diagnostics and Reconfiguration of Data Parallel Programs’’, the authors present the design an implementation of Janus, a tool that automates the reconfiguration of Spark applications. It leverages logs from previous executions as input, enforces configurable adjustment policies over the collected statistics and makes its decisions taking into account communication behaviors specific of the application evaluated, showing gains of up to 1.9x in the scenarios considered. The work entitled ‘‘An Experimental Evaluation of a Parallel Simulated Annealing Approach for the 0–1 Multidimensional Knapsack Problem’’ focuses on the proposal of a parallel simulated annealing algorithm (SA) using GPGPU. The results achieved by the parallel SA were compared to other reference works and showed that GPGPU is effective on the task of obtaining better quality solutions in reduced execution time when compared to sequential programs. In ‘‘Aspen-Based Performance and Energy Modeling Frameworks’’, the authors propose and evaluate two energy estimation techniques: ACEE (Algorithmic and Categorical Energy Estimation), which uses a combination of analytical and empirical modeling techniques; and AEEM (Aspen’s Embedded Energy Estimation), a system-level analytical energy estimation technique, that incorporate Aspen domain specific language for performance modeling. In ‘‘MR-Advisor: A Comprehensive Tuning, Profiling, and Prediction Tool for MapReduce Execution Frameworks on HPC Clusters’’, the MR-Advisor tool is proposed and described in detail. It also presents the MR-Advisor generalization to provide performance optimizations for Hadoop, Spark, and RDMA-enhanced Hadoop MapReduce designs over different file systems such as HDFS, Lustre, and Tachyon.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا