مشخصات مقاله | |
ترجمه عنوان مقاله | تجزیه و تحلیل دینامیکی مبدل حرارتی |
عنوان انگلیسی مقاله | Heat exchanger dynamic analysis |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 30 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
2.617 در سال 2017 |
شاخص H_index | 85 در سال 2018 |
شاخص SJR | 0.876 در سال 2018 |
رشته های مرتبط | مهندسی مکانیک |
گرایش های مرتبط | مکانیک سیالات |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | مدل سازی ریاضی کاربردی – Applied Mathematical Modelling |
دانشگاه | Department of Aeronautical and Automotive Engineering – Loughborough University – UK |
کلمات کلیدی | گرما، مبدل، مدل سازی، پاسخ، دینامیک |
کلمات کلیدی انگلیسی | heat, exchanger, modelling, response, dynamics. |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.apm.2018.04.024 |
کد محصول | E10251 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Highlights Abstract Keywords Nomenclature 1 Introduction 2 Tubular heat exchangers 3 Analysis 4 Matrix representation 5 Transfer function form 6 Pre-heater and post heater time delays 7 Rationalization of μp(s) for a parallel flow heat exchanger 8 Rationalization of μc(s) for a counter flow heat exchanger 9 Block diagram for the parallel flow heat exchanger 10 Block diagram for the counter flow heat exchanger 11 Parallel flow heat exchanger, application study 12 Counter flow heat exchanger, application study 13 Simulation for the parallel flow, heat exchanger 14 Simulation for a counter flow, heat exchanger 15 Conclusion References |
بخشی از متن مقاله: |
Abstract
The modelling and dynamic analysis of shell and tube heat exchangers will be considered in this contribution. Procedures which incorporate the heat transfer and the fluid flow system properties, for these processes, will be developed. An incremental, energy balance yielding the system, partial differential equations presents the governing process. The multivariable, multi-dimensional, Laplace transformed, distributed parameter formulation of heat exchanger representations, are provided. A frequency domain description of the system model is derived enabling the recovery of Laplace function rationality for both parallel and counter flow heat exchanger models. Suitable feedback control techniques are identified, as a prelude to closed loop design studies. The dynamics, for tubular heat exchangers are computed, for purposes of comparison with alternative response and regulation approaches. A typical application study is outlined. Introduction Heat exchangers are used in many industries where fluid heat transfer is required, see for example Saunders E.A (1). In this operation heat energy is transferred from a hot to a cooler fluid flow stream by a carrier type, energy conversion process, as in Hewitt G et al (2) and Coulson. H. G and Richardson J. (3). This involves coupled fluid flow and thermal interactions where heat is transferred along with the fluid flow through the containing volumes and across the separating, heat exchanger, tube walls. The heating of materials during conveyancing operations would also be equivalent to a carrier flow, heat transfer, percolation process. Continuous conveyor fed food preparation systems and the fluid drainage from the pulp-fibre suspensions, in the paper and board manufacturing industries, as detailed in Smith B.W (4), for example, also comprise percolation, heat and mass transfer processes. However, in this compilation the large scale, tubular heat transfer units commonly employed in the oil, gas and chemical industries, as discuss in Sadik K and Liu H. (5), and Smith E.M (6) will be the focus of the formulation, analysis and simulation studies presented herein. These devices are also used in ventilation, air conditioning and battery cooling systems, as detailed in Whalley R and Ameer A (7), Roetzel, W. and Xuan, Y. (8) in refrigeration units, in fossil fuel boilers, see for example Whalley R (9) and in nuclear, electrical power generation plant, as shown in Schultz M.A. (10). Generally, tubular heat transfer units are configured to work in series with a fluid source of supply and a suitable coolant or heating, fluid stream. A continuous process is employed thereafter to simultaneously achieve, the parallel or counter flow, heating or cooling effect required. |