مقاله انگلیسی رایگان در مورد کلان داده برای اینترنت اشیا – الزویر 2018

 

مشخصات مقاله
ترجمه عنوان مقاله کلان داده برای اینترنت اشیا: یک بررسی
عنوان انگلیسی مقاله Big Data for Internet of Things: A Survey
انتشار مقاله سال 2018
تعداد صفحات مقاله انگلیسی 57 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journal List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
5.341 در سال 2017
شاخص H_index 85 در سال 2019
شاخص SJR 0.844 در سال 2017
شناسه ISSN 0167-739X
شاخص Quartile (چارک) Q1 در سال 2017
رشته های مرتبط مهندسی فناوری اطلاعات
گرایش های مرتبط اینترنت و شبکه های گسترده، مدیریت سیستم های اطلاعات
نوع ارائه مقاله
ژورنال
مجله  نسل آینده سیستم های کامپیوتری – Future Generation Computer Systems
دانشگاه  Institute of Computer Science – Masaryk University – Brno – Czech Republic
کلمات کلیدی کلان داده، تحلیل داده ها، اینترنت اشیا، بهداشت و درمان، انرژی، حمل و نقل، اتوماسیون ساختمان، شهرهای هوشمند
کلمات کلیدی انگلیسی Big Data، data analytics، Internet of Things، healthcare, energy، transportation، building automation، Smart Cities
شناسه دیجیتال – doi
https://doi.org/10.1016/j.future.2018.04.053
کد محصول  E10672
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

1- Introduction

2- IoT domains

3- Big Data processes and life cycle

4- Big Data approaches in different IoT domains

5- Comparison of IoT domains from Big Data perspective

6- Conclusion

References

بخشی از متن مقاله:

Abstract

With the rapid development of the Internet of Things (IoT), Big Data technologies have emerged as a critical data analytics tool to bring the knowledge within IoT infrastructures to better meet the purpose of the IoT systems and support critical decision making. Although the topic of Big Data analytics itself is extensively researched, the disparity between IoT domains (such as healthcare, energy, transportation and others) has isolated the evolution of Big Data approaches in each IoT domain. Thus, the mutual understanding across IoT domains can possibly advance the evolution of Big Data research in IoT. In this work, we therefore conduct a survey on Big Data technologies in different IoT domains to facilitate and stimulate knowledge sharing across the IoT domains. Based on our review, this paper discusses the similarities and differences among Big Data technologies used in different IoT domains, suggests how certain Big Data technology used in one IoT domain can be re-used in another IoT domain, and develops a conceptual framework to outline the critical Big Data technologies across all the reviewed IoT domains.

Introduction

Internet of Things (IoT) is one of the most promising technologies in the current epoch. This research paradigm is characterized by using smart and self-configuring objects that can interact with each other via global network infrastructure. Therefore, these seamless interactions between large amounts of heterogeneous objects represent IoT as a disruptive technology that enables ubiquitous and pervasive computing applications [1]. Accordingly, a wide range of industrial IoT applications [2, 3, 4] have been developed and deployed in different domains such as transportation, agriculture, energy, healthcare, food processing industry, military, environmental monitoring, or security surveillance. Since IoT connects the sensors and other devices to the Internet, it plays an important role to support the development of smart services. In other words, the dynamic things collect different kinds of data from the real-world environment. Afterwards, the extraction of relevant information from IoT data can be used to improve and enrich our daily life with context-aware applications, which can for example display contents related to the current situation of the user. Further, context can be defined as the information that is used to characterize the situation of entities (i.e. whether a person, place or object) and the situation is considered to be relevant to the real-time interaction between a user and an application, including the user and the application themselves [5]. AS context is typically featured by location, time, state of people, and environmental settings, IoT becomes an important source of contextual data with an enormous volume, variety and velocity, which makes it an interesting and challenging domain for Big Data research.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا