مشخصات مقاله | |
ترجمه عنوان مقاله | توصیف مشخصه حفظ وزن در شبکه های پیچیده کارکردی مغزی |
عنوان انگلیسی مقاله | Weight-conserving characterization of complex functional brain networks |
انتشار | مقاله سال 2011 |
تعداد صفحات مقاله انگلیسی | 15 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
5.410 در سال 2017 |
شاخص H_index | 307 در سال 2019 |
شاخص SJR | 3.679 در سال 2017 |
شناسه ISSN | 1053-8119 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
رشته های مرتبط | پزشکی |
گرایش های مرتبط | مغز و اعصاب – روانپزشکی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | NeuroImage |
دانشگاه | Black Dog Institute and School of Psychiatry, University of New South Wales, Sydney, Australia |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.neuroimage.2011.03.069 |
کد محصول | E11943 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Outline Abstract Keywords Introduction Methods Results Discussion Acknowledgments References |
بخشی از متن مقاله: |
Abstract Complex functional brain networks are large networks of brain regions and functional brain connections. Statistical characterizations of these networks aim to quantify global and local properties of brain activity with a small number of network measures. Important functional network measures include measures of modularity (measures of the goodness with which a network is optimally partitioned into functional subgroups) and measures of centrality (measures of the functional influence of individual brain regions). Characterizations of functional networks are increasing in popularity, but are associated with several important methodological problems. These problems include the inability to characterize densely connected and weighted functional networks, the neglect of degenerate topologically distinct high-modularity partitions of these networks, and the absence of a network null model for testing hypotheses of association between observed nontrivial network properties and simple weighted connectivity properties. In this study we describe a set of methods to overcome these problems. Specifically, we generalize measures of modularity and centrality to fully connected and weighted complex networks, describe the detection of degenerate high-modularity partitions of these networks, and introduce a weighted-connectivity null model of these networks. We illustrate our methods by demonstrating degenerate high-modularity partitions and strong correlations between two complementary measures of centrality in resting-state functional magnetic resonance imaging (MRI) networks from the 1000 Functional Connectomes Project, an open-access repository of resting-state functional MRI datasets. Our methods may allow more sound and reliable characterizations and comparisons of functional brain networks across conditions and subjects. |