دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقالات پژوهشی پزشکیدانلود رایگان مقالات ژورنالی پزشکیدانلود رایگان مقاله ISI پزشکی به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI روانپزشکی و اعصاب و روان به زبان انگلیسیدانلود رایگان مقاله ISI مغز و اعصاب به زبان انگلیسی

مقاله انگلیسی رایگان در مورد توصیف مشخصه حفظ وزن در شبکه های پیچیده کارکردی مغزی – الزویر ۲۰۱۱

 

مشخصات مقاله
ترجمه عنوان مقاله توصیف مشخصه حفظ وزن در شبکه های پیچیده کارکردی مغزی
عنوان انگلیسی مقاله Weight-conserving characterization of complex functional brain networks
انتشار مقاله سال ۲۰۱۱
تعداد صفحات مقاله انگلیسی  ۱۵ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۵٫۴۱۰ در سال ۲۰۱۷
شاخص H_index ۳۰۷ در سال ۲۰۱۹
شاخص SJR ۳٫۶۷۹ در سال ۲۰۱۷
شناسه ISSN ۱۰۵۳-۸۱۱۹
شاخص Quartile (چارک) Q1 در سال ۲۰۱۹
رشته های مرتبط پزشکی
گرایش های مرتبط مغز و اعصاب – روانپزشکی
نوع ارائه مقاله
ژورنال
مجله / کنفرانس NeuroImage
دانشگاه Black Dog Institute and School of Psychiatry, University of New South Wales, Sydney, Australia
شناسه دیجیتال – doi
https://doi.org/10.1016/j.neuroimage.2011.03.069
کد محصول E11943
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Outline
Abstract
Keywords
Introduction
Methods
Results
Discussion
Acknowledgments
References

بخشی از متن مقاله:

Abstract

Complex functional brain networks are large networks of brain regions and functional brain connections. Statistical characterizations of these networks aim to quantify global and local properties of brain activity with a small number of network measures. Important functional network measures include measures of modularity (measures of the goodness with which a network is optimally partitioned into functional subgroups) and measures of centrality (measures of the functional influence of individual brain regions). Characterizations of functional networks are increasing in popularity, but are associated with several important methodological problems. These problems include the inability to characterize densely connected and weighted functional networks, the neglect of degenerate topologically distinct high-modularity partitions of these networks, and the absence of a network null model for testing hypotheses of association between observed nontrivial network properties and simple weighted connectivity properties. In this study we describe a set of methods to overcome these problems. Specifically, we generalize measures of modularity and centrality to fully connected and weighted complex networks, describe the detection of degenerate high-modularity partitions of these networks, and introduce a weighted-connectivity null model of these networks. We illustrate our methods by demonstrating degenerate high-modularity partitions and strong correlations between two complementary measures of centrality in resting-state functional magnetic resonance imaging (MRI) networks from the 1000 Functional Connectomes Project, an open-access repository of resting-state functional MRI datasets. Our methods may allow more sound and reliable characterizations and comparisons of functional brain networks across conditions and subjects.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا