مقاله انگلیسی رایگان در مورد بازیابی پراکنده سیگنال با اطلاعات متعدد پیشین – الزویر 2018

 

مشخصات مقاله
ترجمه عنوان مقاله بازیابی پراکنده سیگنال با اطلاعات متعدد پیشین: الگوریتم و محدوده اندازه گیری
عنوان انگلیسی مقاله Sparse signal recovery with multiple prior information: Algorithm and measurement
انتشار مقاله سال 2018
تعداد صفحات مقاله انگلیسی 32 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) Scopus – Master Journal List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
3.933 در سال 2017
شاخص H_index 105 در سال 2019
شاخص SJR 0.940 در سال 2017
شناسه ISSN 0165-1684
شاخص Quartile (چارک) Q1 در سال 2017
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط مهندسی الگوریتم ها و محاسبات، هوش مصنوعی، مهندسی نرم افزار
نوع ارائه مقاله
ژورنال
مجله  پردازش سیگنال – Signal Processing
دانشگاه Multimedia Communications and Signal Processing, University of Erlangen-Nuremberg, Erlangen 91058, Germany
کلمات کلیدی سنجش فشرده، اطلاعات پیشین، کمینه سازی n-1 تعدیل شده، محدوده اندازه گیری
کلمات کلیدی انگلیسی Compressed sensing، prior information، weighted n-`1 minimization، measurement bounds
شناسه دیجیتال – doi
https://doi.org/10.1016/j.sigpro.2018.06.019
کد محصول E11148
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

1- Introduction

2- Background

3- Recovery with multiple prior information

4- Bounds for weighted n-ℓ1 minimization

5- Experimental results

6- Conclusion

References

بخشی از متن مقاله:

Abstract

We address the problem of reconstructing a sparse signal from compressive measurements with the aid of multiple known correlated signals. We propose a reconstruction algorithm with multiple side information signals (RAMSI), which solves an n-`1 minimization problem by weighting adaptively the multiple side information signals at every iteration. In addition, we establish theoretical bounds on the number of measurements required to guarantee successful reconstruction of the sparse signal via weighted n-`1 minimization. The analysis of the derived bounds reveals that weighted n-`1 minimization can achieve sharper bounds and significant performance improvements compared to classical compressed sensing (CS). We evaluate experimentally the proposed RAMSI algorithm and the established bounds using numerical sparse signals. The results show that the proposed algorithm outperforms state-of-the-art algorithms—including classical CS, `1-`1 minimization, Modified-CS, regularized Modified-CS, and weighted `1 minimization—in terms of both the theoretical bounds and the practical performance.

Introduction

Compressed sensing (CS) [1–15] states that sparse signals can be recovered in a computationally tractable manner from a limited set of measurements by minimizing the `1-norm. The CS performance can be improved by replacing the `1-norm with a weighted `1-norm [8, 9, 16–18]. The studies in [11, 12] provide bounds on the number of measurements required for successful signal recovery based on convex optimization. Furthermore, distributed compressed sensing [13, 14] allows a correlated ensemble of sparse signals to be jointly recovered by exploiting the intra- and inter-signal correlations. We consider the problem of reconstructing a signal given side or prior information, gleaned from a set of known correlated signals. Initially, this problem was studied in [16, 19–28], where the modified CS method [19, 21] considered that a part of the support is available from prior knowledge and tried to find the signal that satisfies the measurement constraint and is sparsest outside the known support. Prior information on the sparsity pattern of the data was also considered in [23] and informationtheoretic guarantees were presented. The studies in [24, 25] introduced weights into the `1 minimization framework that depend on the partitioning of the source signal into two sets, with the entries of each set having a specific probability of being nonzero.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا