مشخصات مقاله | |
ترجمه عنوان مقاله | پیش بینی موج با استفاده از وقفه فراشناختی سیستم استنتاج فازی نوع 2 |
عنوان انگلیسی مقاله | Wave Forecasting using Meta-cognitive Interval Type-2 Fuzzy Inference System |
انتشار | مقاله سال 2018 |
تعداد صفحات مقاله انگلیسی | 9 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.013 در سال 2017 |
شاخص H_index | 34 در سال 2019 |
شاخص SJR | 0.258 در سال 2017 |
شناسه ISSN | 1877-0509 |
رشته های مرتبط | مهندسی کامپیوتر، مهندسی انرژی |
گرایش های مرتبط | انرژی های تجدیدپذیر، مهندسی الگوریتم ها و محاسبات، مهندسی نرم افزار |
نوع ارائه مقاله |
کنفرانس |
کنفرانس | پروسدیای علوم کامپیوتر – Procedia Computer Science |
دانشگاه | Nanyang Technological University, Singapore |
کلمات کلیدی | پیش بینی موج، وقفه سیستم های فازی نوع 2، مدت پیش بینی فراشناختی |
کلمات کلیدی انگلیسی | wave prediction، interval type-2 fuzzy systems، meta-cognitionlong-term forecast |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.procs.2018.10.502 |
کد محصول | E11175 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Meta-cognitive interval type-2 neuro fuzzy inference system 3- Meta-cognitive learning algorithm for IT2FIS 4- Performance evaluation 5- Conclusion References |
بخشی از متن مقاله: |
Abstract Renewable energy is fast becoming a mainstay in today’s energy scenario. One of the important sources of renewable energy is the wave energy, in addition to wind, solar, tidal, etc. Wave prediction/forecasting is consequently essential in coastal and ocean engineering studies. However, it is difficult to predict wave parameters in long term and even in the short term due to its intermittent nature. This study aims to propose a solution to handle the issue using Interval type-2 fuzzy inference system, or IT2FIS. IT2FIS has been shown to be capable of handling uncertainty associated with the data. The proposed IT2FIS is a fuzzy neural network realizing Takagi-Sugeno-Kang inference mechanism employing meta-cognitive learning algorithm. The algorithm monitors knowledge in a sample to decide an appropriate learning strategy. Performance of the system is evaluated by studying significant wave heights obtained from buoys located in Singapore. The results compared with existing state-of-the art fuzzy inference system approaches clearly indicate the advantage of IT2FIS based wave prediction. Introduction Renewable energy is becoming more acceptable as an alternative source of energy. They provide more environmental friendly and cheaper power but the electrical power generation is becoming more complex with inclusion of these sources. One of the main reasons for the complexity is the inability to accurately predict the strength of these sources at a given time. There are various natural as well as artificial causes. As a result, the forecast of the energy generated is very uncertain. This uncertainty leads to unpredictable or unrealistic generation, even leads to financial losses. Hence, realistic forecast of these sources is the need for increased and improved renewable energy usage. In this study, we attempt to forecast wave energy by working on an important characteristic of wave, namely significant wave height. Recently, artificial neural network has been used in predicting wave height [15, 9]. |