مشخصات مقاله | |
ترجمه عنوان مقاله | در نظر گرفتن موضوع یا ریسک برای شکست |
عنوان انگلیسی مقاله | Mind the tail, or risk to fail |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 19 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
5.352 در سال 2018 |
شاخص H_index | 158 در سال 2019 |
شاخص SJR | 2.203 در سال 2018 |
شناسه ISSN | 0148-2963 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مدیریت، اقتصاد |
گرایش های مرتبط | مهندسی مالی و ریسک، مدیریت مالی، مدیریت بحران، اقتصاد مالی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | مجله تحقیقات کسب و کار-Journal of Business Research |
دانشگاه | Department of Finance, University of Birmingham, Birmingham B15 2TY, United Kingdom |
کلمات کلیدی | ریسک دنباله ای، ارزش در خطر، خطر نزولی، کمبود مورد انتظار، ورشکستگی، بحران مالی |
کلمات کلیدی انگلیسی | Tail risk، Value-at-risk، Downside risk، Expected shortfall، Bankruptcy، Financial distress |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jbusres.2019.02.037 |
کد محصول | E12253 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Defining financial distress 3. Estimating downside risk measures 4. Data and covariates 5. Empirical methods 6. Multivariate models with thresholds 7. Multivariate models with thresholds and risk measures 8. Multivariate models with 5% tail risk estimates 9. Conclusion Acknowledgements Appendix A 1. Variable description Appendix A 2. Correlation matrix Appendix A 3. Area under ROC curves References |
بخشی از متن مقاله: |
Abstract
In this study we hypothesise that more frequent extreme negative daily equity returns result in higher tail risk, and this subsequently increases firms’ likelihood of entering financial distress. Specifically, we investigate the role of Value-at-risk and Expected Shortfall in aggravating firms’ likelihood of experiencing financial distress. Our results show that longer horizon (three- and five-year) tail risk measures contributes positively toward firms’ likelihood of experiencing financial distress. Additionally, considering the declining number of bankruptcy filings, and increasing out-of-court negotiations and debt reorganisations, we argue in favour of penalising firms for becoming sufficiently close to bankruptcy that they have questionable going-concern status. Thus, we propose a definition of financial distress contingent upon firms’ earnings, financial expenses, market value and operating cash flow. Introduction Financial Distress and Tail Risk are two apparently diverse topics that are gaining increasing attention in the corporate finance literature. The financial crisis of 2007–08 was the alarm bell that augmented global awareness toward tail risk among financial risk managers. Since then, we have witnessed increasing concern among stakeholders toward firms’ risk of bankruptcy or financial distress. Although tail risk has been an active area of investigation in the domain concerned with large financial institutions and financial stability, to the best of our knowledge this study is the first academic attempt to address the relationship between firms’ extreme negative daily equity returns and their likelihood of experiencing financial distress. We hypothesise that more frequent extreme negative daily equity returns result in higher tail risk, and this subsequently increases firms’ likelihood of entering financial distress. The vast majority of academic literature on bankruptcy prediction gravitates around either the choice of explanatory variables (e.g. Campbell, Hilscher, & Szilagyi, 2008; Jones, 2017), or modelling methodologies (e.g. Gupta, Gregoriou, & Ebrahimi, 2018; Shumway, 2001) targeted toward optimising models’ classification performance. However, a model’s performance is significantly dependent on how the distress or bankruptcy event is defined in the first place. |