مشخصات مقاله | |
ترجمه عنوان مقاله | شناسایی سیستمهای اطلاعاتی – طرحی برای استفاده آینده از GIS در هدف قرار دادن اکتشاف مواد معدنی |
عنوان انگلیسی مقاله | Exploration information systems – A proposal for the future use of GIS in mineral exploration targeting |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 14 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله مروری (Review Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.721 در سال 2018 |
شاخص H_index | 79 در سال 2019 |
شاخص SJR | 2.058 در سال 2018 |
شناسه ISSN | 0169-1368 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | جغرافیا، مهندسی معدن |
گرایش های مرتبط | سنجش از دور و سیستم اطلاعات جغرافیایی GIS، استخراج معدن |
نوع ارائه مقاله |
ژورنال |
مجله | بررسی زمین شناسی سنگ معدن – Ore Geology Reviews |
دانشگاه | Faculty of Engineering, Malayer University, Malayer, Iran |
کلمات کلیدی | شناسایی سیستم های اطلاعات (EIS)، هدف قرار دادن اکتشاف مواد معدنی، سیستم های اطلاعات جغرافیایی (GIS)، رویکرد سیستم های معدنی |
کلمات کلیدی انگلیسی | Exploration information systems (EIS)، Mineral exploration targeting، Geographic information systems (GIS)، Mineral systems approach |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.oregeorev.2019.103005 |
کد محصول | E12945 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Exploration information systems (EIS) 3- Discussion 4- Concluding remarks References |
بخشی از متن مقاله: |
Abstract The advent of modern data collection and storage technologies has brought about a huge increase in data volumes with both traditional and machine learning tools struggling to effectively handle, manage and analyse the very large data quantities that are now available. The mineral exploration industry is by no means immune to this big data issue. Exploration decision-making has become much more complex in the wake of big data, in particular with respect to questions about how to best manage and use the data to obtain information, generate knowledge and gain insight. One of the ways in which the mineral exploration industry works with big data is by using a geographic information system (GIS). For example, GIS platforms are often used for integration, interrogation and interpretation of diverse geoscience and mineral exploration data with the goal of refining and prioritising known and identifying new targets. Here we (i) briefly discuss the importance of carefully translating conceptual ore deposit models into effective exploration targeting maps, (ii) propose and describe what we term exploration information systems (EIS): a new idea for an information system designed to better integrate the conceptual mineral deposit model (i.e., the critical and constituent processes of the targeted mineral system) with data available to support exploration targeting, and (iii) discuss how best to categorise mineral systems in an EIS as scale-dependent subsystems to form mineral deposits. Our vision for the future use of EIS in exploration targeting is one whereby the mappable ingredients of a targeted mineral system are translated and combined into a set of weighted evidence (or proxy) maps automatically, resulting in an auto-generated mineral prospectivity map and a series of ranked exploration targets. We do not envisage the EIS replacing human input and ingenuity; rather we envisage the EIS as an additional tool in the exploration toolbox and as an intelligence amplifying system in which humans are making use of machines to achieve the best possible results. Introduction Mineral exploration targeting requires the compilation, integration and interrogation of diverse, multi-disciplinary data (e.g., Hronsky and Groves, 2008). In today’s world, this is commonly done using a geographic information system (GIS), the light table environment of our modern computer-age. A GIS is a powerful computer-based system designed to capture, store, manipulate, analyse, manage, and present spatial data (e.g., Groves et al., 2000) and their non-spatial attributes that can be stored in linked, interrogatable tables. In mineral exploration targeting, as in many other fields of applied geoscience, GIS has surpassed the human ability to integrate and quantitatively analyse the ever-growing amount of geospatial data available, thereby progressively replacing the traditional working methods. Over the past two decades and driven by significant improvements in soft- and hardware capabilities, powerful GIS-based, algorithm-driven methods have been developed in support of exploration targeting. These methods fall under the umbrella term of mineral prospectivity mapping (MPM), also known as mineral prospectivity analysis, spatial predictive modelling or mineral potential modelling (e.g., Bonham-Carter, 1994; Pan and Harris, 2000; Carranza, 2008; Porwal and Kreuzer, 2010; Yousefi and Nykänen, 2017; Hronsky and Kreuzer, 2019). |