مشخصات مقاله | |
ترجمه عنوان مقاله | یک الگوریتم خوشه بندی نظارت شده جدید برای اپلیکیشن های سیستم حمل و نقل |
عنوان انگلیسی مقاله | A Novel Supervised Clustering Algorithm for Transportation System Applications |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 11 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Master Journal List – JCR – Scopus |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
7.420 در سال 2018 |
شاخص H_index | 112 در سال 2019 |
شاخص SJR | 1.412 در سال 2018 |
شناسه ISSN | 1524-9050 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم ها و محاسبات، هوش مصنوعی، برنامه نویسی کامپیوتر |
نوع ارائه مقاله |
ژورنال |
مجله | نتایج بدست آمده در حوزه سیستم های حمل و نقل هوشمند – Transactions on Intelligent Transportation Systems |
دانشگاه | Charles E. Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA, with the Center for Sustainable Mobility, Virginia Tech Transportation Institute, Blacksburg, VA 24061 USA, and also with the Civil Engineering Department, King Saud University, Riyadh 2890588, Saudi Arabia. |
کلمات کلیدی | خوشه بندی نظارت شده، مجموعه داده هایی با ابعاد بالا و عملیات ترافیک، سیستم های دوچرخه اشتراک، محاسبات شهری، طبقه بندی |
کلمات کلیدی انگلیسی | Supervised clustering، high dimensional datasets and traffic operations، bike-sharing systems، urban computing، classification |
شناسه دیجیتال – doi |
https://doi.org/10.1109/TITS.2018.2890588 |
کد محصول | E13118 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
I- INTRODUCTION II- PROBLEM STATEMENT III- RELATED WORK IV- THE COLLEGE ADMISSION ALGORITHM V- THE PROPOSED ALGORITHM VI- DATASETS VII- CLUSTERING RESULTS AND DISCUSSION VIII- CONCLUSION REFERENCES |
بخشی از متن مقاله: |
Abstract This paper proposes a novel supervised clustering algorithm to analyze large datasets. The proposed clustering algorithm models the problem as a matching problem between two disjoint sets of agents, namely, centroids and data points. This novel view of the clustering problem allows the proposed algorithm to be multi-objective, where each agent may have its own objective function. The proposed algorithm is used to maximize the purity and similarity in each cluster simultaneously. Our algorithm shows promising performance when tested using two different transportation datasets. The first dataset includes speed measurements along a section of Interstate 64 in the state of Virginia, while the second dataset includes the bike station status of a bike sharing system (BSS) in the San Francisco Bay Area. We clustered each dataset separately to examine how traffic and bike patterns change within clusters and then determined when and where the system would be congested or imbalanced, respectively. Using a spatial analysis of these congestion states or imbalance points, we propose potential solutions for decision makers and agencies to improve the operations of I-64 and the BSS. We demonstrate that the proposed algorithm produces better results than classical kmeans clustering algorithms when applied to our datasets with respect to a time event. The contributions of our paper are: 1) we developed a multi-objective clustering algorithm; 2) the algorithm is scalable (polynomial order), fast, and simple; and 3) the algorithm simultaneously identifies a stable number of clusters and clusters the data. INTRODUCTION WITH the growth of new technologies, smart cities and urban areas are adapting advanced devices to control and monitor transportation networks and thus provide better service to the public and private sectors. These devices collect data through many sensors in the city’s infrastructure. Agencies and researchers exploring the massive amounts of collected data often find it challenging to draw meaningful conclusions due the sheer size of the datasets. One way to deal with such data is to use clustering approaches. In the transportation field, operating agencies (such as departments of transportation) have been collecting data to improve the efficiency of the transportation network and provide a better service for all transportation modes. Clustering the travel times or speeds of transportation modes could help operating agencies to better manage the transportation network. In particular, the collected data could be reduced to find the cluster centroids (i.e., the means of the clusters) that represent the entire data with respect to a time event such as time of day, day of month, and month of the year. This could help operating agencies answer several questions related to traffic operations such as, “Can we discriminate between recurrent congestion and outliers?” and “Can we identify how many time periods we need to plan for in terms of resource and congestion management?” |