مشخصات مقاله | |
ترجمه عنوان مقاله | یک الگوریتم بهینه سازی کلونی مورچه بهبود یافته مبتنی بر استراتژی های ترکیبی برای زمانبندی مسئله |
عنوان انگلیسی مقاله | An Improved Ant Colony Optimization Algorithm Based on Hybrid Strategies for Scheduling Problem |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 12 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | JCR – Master Journal List – DOAJ – Scopus |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.641 در سال 2018 |
شاخص H_index | 56 در سال 2019 |
شاخص SJR | 0.609 در سال 2018 |
شناسه ISSN | 2169-3536 |
شاخص Quartile (چارک) | Q2 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم ها و محاسبات، مهندسی نرم افزار |
نوع ارائه مقاله |
ژورنال |
مجله | IEEE Access |
دانشگاه | College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China |
کلمات کلیدی | مکانیسم تکامل توام، بهینه سازی کلونی مورچه، استراتژی به روز رسانی فرومون، مکانیسم انتشار فرومون، استراتژی ترکیبی، مسأله ی تخصیص |
کلمات کلیدی انگلیسی | Co-evolution mechanism، ACO، pheromone updating strategy، pheromone diffusion mechanism، hybrid strategy، assignment problem |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2897580 |
کد محصول | E13122 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
I- Introduction II- Related Work III- The ACO Algorithm IV- A New Multi-Population Co-Evolution Ant Colony Optimization(ICMPACO) Algorithm V- Application of the ICMPACO Algorithm for Solving TSP VI- APPLICATION OF THE ICMPACO ALGORITHM FOR SOLVING GATE ASSIGNMENT PROBLEM VII- CONCLUSION AND FUTURE WORK References |
بخشی از متن مقاله: |
Abstract In this paper, an improved ant colony optimization (ICMPACO) algorithm based on the multi-population strategy, co-evolution mechanism, pheromone updating strategy, and pheromone diffusion mechanism is proposed to balance the convergence speed and solution diversity, and improve the optimization performance in solving the large-scale optimization problem. In the proposed ICMPACO algorithm, the optimization problem is divided into several sub-problems and the ants in the population are divided into elite ants and common ants in order to improve the convergence rate, and avoid to fall into the local optimum value. The pheromone updating strategy is used to improve optimization ability. The pheromone diffusion mechanism is used to make the pheromone released by ants at a certain point, which gradually affects a certain range of adjacent regions. The co-evolution mechanism is used to interchange information among different sub-populations in order to implement information sharing. In order to verify the optimization performance of the ICMPACO algorithm, the traveling salesmen problem (TSP) and the actual gate assignment problem are selected here. The experiment results show that the proposed ICMPACO algorithm can effectively obtain the best optimization value in solving TSP and effectively solve the gate assignment problem, obtain better assignment result, and it takes on better optimization ability and stability. INTRODUCTION Ant colony optimization (ACO) algorithm was proposed by Dorigo in 1992 [1]. It is a heuristic evolutionary algorithm based on population, which is inspired by the research results of the collective behavior of the real ants in nature. It has been proved that the ACO algorithm takes on a better optimization performance in solving optimization problems. The ACO algorithm relies on the activities of many individualities and feedback of information. Although the activity of ant is very simple, the activity of whole ant colony is acceptable. The ACO algorithm has the characteristics of distributed computing, positive feedback and heuristic search. In essence, it is a heuristic global optimization algorithm in the evolutionary algorithm [2]–[11]. In process of the evolution, the information interaction based on pheromone plays a very important role. Due to the advantages of the ACO algorithm, it is widely applied in solving combinatorial optimization problems, such as the traveling salesman problem, assignment problem, job-shop scheduling problem, vehicle routing problem, graph coloring problem and network routing problem and so on [12]–[25]. A lot of experts have devoted themselves to the research of the ACO algorithm, and some improved ACO algorithms are proposed to solve the complex optimization problems. |