مشخصات مقاله | |
ترجمه عنوان مقاله | در مورد طراحی کاربردی یک خازن فعال دو پایانه ای |
عنوان انگلیسی مقاله | On the Practical Design of a Two-terminal Active Capacitor |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 15 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | JCR – Master Journal List – Scopus |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
8.554 در سال 2019 |
شاخص H_index | 222 در سال 2020 |
شاخص SJR | 2.510 در سال 2019 |
شناسه ISSN | 0885-8993 |
شاخص Quartile (چارک) | Q1 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | برق |
گرایش های مرتبط | الکترونیک، الکترونیک قدرت، مدارهای مجتمع الکترونیک، ماشین های الکتریکی، سیستم های قدرت |
نوع ارائه مقاله |
ژورنال |
مجله | نتایج بدست آمده در حوزه در الکترونیک قدرت – Transactions on Power Electronics |
دانشگاه | Department of Energy Technology, Aalborg University, Aalborg, Denmark |
کلمات کلیدی | خازنها، مبدل توان، مدارهای فعال، قابلیت اطمینان |
کلمات کلیدی انگلیسی | Capacitors، Power converter، Active circuits، Reliability |
شناسه دیجیتال – doi |
https://doi.org/10.1109/TPEL.2019.2893156 |
کد محصول | E13306 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
I- Introduction II- Two-Terminal Active Capacitor Concept III- Component Sizing of the Active Capacitor for Cost-Constraint Applications IV- Impedance Characteristics of the Active Capacitor V- Start-Up Solutions for the Active Capacitor VI- A Case Study for A Capacitive Dc Link Application And Experimental Verifications VII- Conclusions References |
بخشی از متن مقاله: |
Abstract A two-terminal active capacitor concept is proposed recently based on an active power electronic circuit with a voltage control method and self-power scheme. It retains the convenience of use as a passive capacitor with two power terminals only without any additional required connections, and has the potential to either increased power density or reduced design cost depending on the applications. Based on the previously proof-of-concept study, this paper addresses the design constraints, impedance modeling, and start-up solutions of two-terminal active capacitors. A design method for functionality, efficiency, lifetime and cost constraints application is applied to size the active components and passive elements. A voltage feed-forward control scheme is implemented to improve its dynamic response. Two start-up solutions are proposed to overcome the issues brought by the self-power scheme. A case study of an active capacitor for the DC link of a singlephase full-bridge rectifier is presented to demonstrate the theoretical analyses. INTRODUCTION The applications of power electronics consume unprecedented quantities of capacitors for harmonic filtering, power balancing, and/or short-term energy storage. In a singlephase voltage-source rectifier or inverter system, the capacitive DC link needs to filter low-frequency current components while limiting the voltage variation within a specific range. In a three-phase system, possible unbalances appearing in line voltages and/or loads introduce low-frequency harmonics in the DC link [1]. Therefore, a bulky capacitor bank is required for the capacitive DC links in most single-phase and three-phase applications. Moreover, large capacitor banks are also necessary for the AC filters in MW-level highpower inverter applications [2]. Electrolytic capacitors, film capacitors, and ceramic capacitors have been applied for one or more of those applications by considering their respective electrical characteristics, cost, volumetric efficiency, and reliability performance. Capacitor technology advancements have introduced to the market high-performance products, such as high-density, long-lifetime, low Equivalent Series Resistance (ESR), or high-temperature series. However, capacitors are still one of the highest failure components in power electronic systems, and the design constraints in cost and/or power density compromised with electrical and reliability performance still impose a great challenge even with the state-of-the-art capacitor technologies [3]. |