مشخصات مقاله | |
ترجمه عنوان مقاله | چالش و پیش بینی دورنمای درمان شناسی mRNA |
عنوان انگلیسی مقاله | The challenge and prospect of mRNA therapeutics landscape |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 63 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله مروری (Review Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR – MedLine |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
13.217 ر سال 2019 |
شاخص H_index | 161 سال 2020 |
شاخص SJR | 3.179 ر سال 2019 |
شناسه ISSN | 0734-9750 |
شاخص Quartile (چارک) | Q1 سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | زیست شناسی |
گرایش های مرتبط | ژنتیک، علوم سلولی و مولکولی، بیوشیمی |
نوع ارائه مقاله |
ژورنال |
مجله | پیشرفت های بیوتکنولوژی – Biotechnology Advances |
دانشگاه | School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China |
کلمات کلیدی | درمان شناسی mRN، اصلاح mRNA، تحویل mRNA، ژن درمانی، درمان شناسی اسید نوکلئیک، رونویسی در شرایط آزمایشگاهی |
کلمات کلیدی انگلیسی | mRNA therapeutics، mRNA modification، mRNA delivery، Gene therapy، Nucleic acid therapeutics، In vitro transcription |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.biotechadv.2020.107534 |
کد محصول | E14788 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Structural elements of mRNA 3- Improving the stability and translation of mRNA 4- Avoiding immunogenicity of mRNA 5- 5 mRNA delivery 6- Preclinical and clinical advances of mRNA therapeutics 7- Concerns over the mRNA medicinal industry 8- Summary and perspective References |
بخشی از متن مقاله: |
Abstract Messenger RNA (mRNA)-based therapeutics hold the potential to cause a major revolution in the pharmaceutical industry because they can be used for precise and individualized therapy, and enable patients to produce therapeutic proteins in their own bodies without struggling with the comprehensive manufacturing issues associated with recombinant proteins. Compared with the current therapeutics, the production of mRNA is much cost-effective, faster and more flexible because it can be easily produced by in vitro transcription, and the process is independent of mRNA sequence. Moreover, mRNA vaccines allow people to develop personalized medications based on sequencing results and/or personalized conditions rapidly. Along with the great potential from bench to bedside, technical obstacles facing mRNA pharmaceuticals are also obvious. The stability, immunogenicity, translation efficiency, and delivery are all pivotal issues need to be addressed. In the recently published research results, these issues are gradually being overcome by state-of-the-art development technologies. In this review, we describe the structural properties and modification technologies of mRNA, summarize the latest advances in developing mRNA delivery systems, review the preclinical and clinical applications, and put forward our views on the prospect and challenges of developing mRNA into a new class of drug. INTRODUCTION Messenger RNA (mRNA) has become an attractive subject of basic and applied research since it was first discovered in 1960s (Brenner et al., 1961). Accordingly, the understanding of mRNA has shifted from a simple link between DNA and protein to a versatile molecule that regulates the functions of genes in all living organisms. Based on this change, numerous types of mRNA-based therapeutics have emerged. In 1990, Wolff et al. firstly reported that intramuscular injection of mRNA into the skeletal muscle of mice led to the expression of encoding proteins (Wolff et al., 1990). Since then, mRNA- based therapeutics have been exploited in a variety of applications, including cancer immunotherapy, infectious disease vaccines, protein substitution and cellular genetic engineering. In 2001, ex vivo mRNA transfected dendritic cells entered clinical trial for the first time (Heiser et al., 2002), and hundreds of mRNA-based clinical trials have been launched over the past two decades. However, mRNA was not considered a new class of drug in the first decades after its discovery. Obstacles such as instability and immunogenicity have hampered its development, making it less pursued than DNA in gene therapy (Burnett and Rossi, 2012; Crooke et al., 2018; Geall et al., 2013; Hajj and Whitehead, 2017; Kallen and Thess, 2014; Kreiter et al., 2011; Reautschnig et al., 2017; Sahin et al., 2014; Van et al., 2015). In recent years, these key problems have been mainly solved by introducing modified nucleosides into mRNA sequences and developing various RNA packaging and delivery systems. A lot of evidences not only proved that mRNA can mediate superior transfection efficiency and longer protein expression time, but also revealed the main advantages of mRNA over DNA. The advantages of mRNA include: (1) mRNA does not need to enter the nucleus to be functional. |