مشخصات مقاله | |
ترجمه عنوان مقاله | فن آوری های پیشرفته تشخیص تصویر بیماری های کشاورزی: مروری |
عنوان انگلیسی مقاله | Advanced agricultural disease image recognition technologies: A review |
انتشار | مقاله سال 2021 |
تعداد صفحات مقاله انگلیسی | 38 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله مروری (Review Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | scopus – DOAJ |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
شاخص ایمپکت فاکتور | 6.580 در سال 2020 |
شاخص H_index | 20 در سال 2021 |
شاخص SJR | 0.756 در سال 2020 |
شناسه ISSN | 2214-3173 |
شاخص Quartile (چارک) | Q1 در سال 2020 |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | کشاورزی |
گرایش های مرتبط | علوم باغبانی، گیاه پزشکی، بیماری شناسی گیاهی |
نوع ارائه مقاله |
ژورنال |
مجله | پردازش اطلاعات در کشاورزی – Information Processing in Agriculture |
دانشگاه | Chinese Academy of Sciences, PR China |
کلمات کلیدی | بیماری های کشاورزی، تشخیص تصویر، هوش مصنوعی، یادگیری انتقال، یادگیری عمیق |
کلمات کلیدی انگلیسی | Agricultural diseases, Image recognition, Artificial intelligence, Transfer learning, Deep learning |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.inpa.2021.01.003 |
کد محصول | E15330 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Keywords 1. Introduction 2. Overview of advanced image recognition technologies 3. Advanced image recognition technologies of agricultural diseases 3.1. Methods based on deep learning 3.1.1. Deep learning models 3.1.2. Works based on deep learning 3.1.3. Discussion 3.2. Methods based on transfer learning 3.2.1. Transfer learning models 3.2.2. Works based on transfer learning 3.2.3. Discussion 3.3. Summary 4. Conclusion Declaration of Competing Interest Acknowledgment References |
بخشی از متن مقاله: |
Abstract Agricultural disease image recognition has an important role to play in the field of intelligent agriculture. Some advanced machine learning methods associated with the development of artificial intelligence technology in recent years, such as deep learning and transfer learning, have begun to be used for the recognition of agricultural diseases. However, the adoption of these methods continues to face a number of important challenges. This paper looks specifically at deep learning and transfer learning and discusses the recent progress in the use of these advanced technologies for agricultural disease image recognition. Analysis and comparison of these two methods reveals that current agricultural disease data resources make transfer learning the better option. The paper then examines the core issues that require further study for research in this domain to continue to progress, such as the construction of image datasets, the selection of big data auxiliary domains and the optimization of the transfer learning method. Creating image datasets obtained under actual cultivation conditions is found to be especially important for the development of practically viable agricultural disease image recognition systems. 1. Introduction A recent report by the Food and Agriculture Organization of the United Nations suggests that more than one third of the natural loss of agricultural production every year is caused by agricultural diseases and pests [1], making these the most important factors currently affecting agricultural production and food security [2]. Agricultural production is complex and there are numerous agricultural diseases and pests that need to be taken into account. Traditional approaches that rely on laboratory-based observations and experiments can easily lead to incorrect diagnoses. |