مقاله انگلیسی رایگان در مورد یادگیری ماشین در ناهنجاری 5G – الزویر 2023

 

مشخصات مقاله
ترجمه عنوان مقاله یادگیری ماشین کاربردی در تشخیص ناهنجاری معماری O-RAN نسل پنجم شبکه تلفن همراه
عنوان انگلیسی مقاله Machine Learning Applied to Anomaly Detection on 5G O-RAN Architecture
نشریه الزویر
انتشار مقاله سال 2023
تعداد صفحات مقاله انگلیسی 13 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
2.562 در سال 2022
شاخص H_index 109 در سال 2023
شاخص SJR 0.507 در سال 2022
شناسه ISSN 1877-0509
فرضیه ندارد
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط فناوری اطلاعات و ارتباطات – کامپیوتر – فناوری اطلاعات
گرایش های مرتبط مخابرات سیار – هوش مصنوعی – شبکه های کامپیوتری
نوع ارائه مقاله
ژورنال
مجله  Procedia Computer Science – مجموعه علوم کامپیوتر
دانشگاه Federal University of Rio Grande do Norte, Brazil
کلمات کلیدی شاخص کلیدی عملکرد، تشخیص ناهنجاری، یادگیری ماشین، O-RAN
کلمات کلیدی انگلیسی KPIs; anomaly detection; machine learning; O-RAN
شناسه دیجیتال – doi
https://doi.org/10.1016/j.procs.2023.08.146
لینک سایت مرجع https://www.sciencedirect.com/science/article/pii/S1877050923009110
کد محصول e17592
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
1 Introduction
2 Dataset
3 Results
4 Conclusion
Acknowledgements
References

بخشی از متن مقاله:

Abstract

This article presents a study with feasibility and performance analysis of machine learning (ML) techniques using supervised techniques for anomaly detection problems in a 5G communication network. The proposed ML models (Multilayer Perceptron, Decision Tree, and Support Vector Machine) were used to classify data into anomaly or non-anomaly based on two 5G Open Radio Access Network (O-RAN) datasets with various key performance indicators (KPIs). Furthermore, we propose a strategy that devotes to labeling anomalous situations, leveraging the t-Distributed Stochastic Neighbor Embedding (tSNE) technique atop datasets enclosing multiple KPIs. The results were significant, with an accuracy above 90% for all use cases considered.

IntroductionTo support new 5G cellular network requirements (e.g., data rates exceeding 10 Gbps, network latency under 1 ms, capacity expansion by a factor of 1,000, and energy efficiency gains), vendors have begun investigating new radio access network (RAN) architectures [17, 13, 25, 5, 23].

Open Radio Access Network (O-RAN), suggested by the O-RAN Alliance [15], stands as a promising radio technology that has gained worldwide acceptance. O-RAN is a worldwide community of operators, manufacturers,technology that has gained worldwide acceptance. O-RAN is a worldwide community of operators, manufacturers, and academic institutes [18, 1]. The vision is to rewrite the RAN industry towards establishing an open, adaptable, and intelligent RAN [15]. Artificial intelligence (AI) in machine learning (ML) will play a crucial role in the 5G networkwith particular emphasis on the O-RAN. For example, ML use can drive more efficient enhancements in 5G network planning, automation of network operations (e.g., provisioning, optimization, and fault prediction), network slicing, service quality prediction, and other applications and services [8, 3, 14, 20].

Conclusion

In this work, we present results and analyses of three ML/AI supervised approaches applied to anomaly detection: Multilayer Perceptron, Decision Tree, and Support Vector Machine. The tests were conducted on an emulation testbed concerning a network environment dataset. The unsupervised ML/AI strategy, based on t-Distributed Stochastic Neighbor Embedding (tSNE), was used to create data labels. Results associated with the accuracy of the ML/AI algorithms were obtained, suggesting an excellent performance with an accuracy of above 90% for all cases.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا