مقاله انگلیسی رایگان در مورد یادگیری ماشین در ناهنجاری ۵G – الزویر ۲۰۲۳
مشخصات مقاله | |
ترجمه عنوان مقاله | یادگیری ماشین کاربردی در تشخیص ناهنجاری معماری O-RAN نسل پنجم شبکه تلفن همراه |
عنوان انگلیسی مقاله | Machine Learning Applied to Anomaly Detection on 5G O-RAN Architecture |
نشریه | الزویر |
انتشار | مقاله سال ۲۰۲۳ |
تعداد صفحات مقاله انگلیسی | ۱۳ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۲٫۵۶۲ در سال ۲۰۲۲ |
شاخص H_index | ۱۰۹ در سال ۲۰۲۳ |
شاخص SJR | ۰٫۵۰۷ در سال ۲۰۲۲ |
شناسه ISSN | ۱۸۷۷-۰۵۰۹ |
فرضیه | ندارد |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | فناوری اطلاعات و ارتباطات – کامپیوتر – فناوری اطلاعات |
گرایش های مرتبط | مخابرات سیار – هوش مصنوعی – شبکه های کامپیوتری |
نوع ارائه مقاله |
ژورنال |
مجله | Procedia Computer Science – مجموعه علوم کامپیوتر |
دانشگاه | Federal University of Rio Grande do Norte, Brazil |
کلمات کلیدی | شاخص کلیدی عملکرد، تشخیص ناهنجاری، یادگیری ماشین، O-RAN |
کلمات کلیدی انگلیسی | KPIs; anomaly detection; machine learning; O-RAN |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.procs.2023.08.146 |
لینک سایت مرجع | https://www.sciencedirect.com/science/article/pii/S1877050923009110 |
کد محصول | e17592 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract ۱ Introduction ۲ Dataset ۳ Results ۴ Conclusion Acknowledgements References |
بخشی از متن مقاله: |
Abstract This article presents a study with feasibility and performance analysis of machine learning (ML) techniques using supervised techniques for anomaly detection problems in a 5G communication network. The proposed ML models (Multilayer Perceptron, Decision Tree, and Support Vector Machine) were used to classify data into anomaly or non-anomaly based on two 5G Open Radio Access Network (O-RAN) datasets with various key performance indicators (KPIs). Furthermore, we propose a strategy that devotes to labeling anomalous situations, leveraging the t-Distributed Stochastic Neighbor Embedding (tSNE) technique atop datasets enclosing multiple KPIs. The results were significant, with an accuracy above 90% for all use cases considered. IntroductionTo support new 5G cellular network requirements (e.g., data rates exceeding 10 Gbps, network latency under 1 ms, capacity expansion by a factor of 1,000, and energy efficiency gains), vendors have begun investigating new radio access network (RAN) architectures [17, 13, 25, 5, 23]. Open Radio Access Network (O-RAN), suggested by the O-RAN Alliance [15], stands as a promising radio technology that has gained worldwide acceptance. O-RAN is a worldwide community of operators, manufacturers,technology that has gained worldwide acceptance. O-RAN is a worldwide community of operators, manufacturers, and academic institutes [18, 1]. The vision is to rewrite the RAN industry towards establishing an open, adaptable, and intelligent RAN [15]. Artificial intelligence (AI) in machine learning (ML) will play a crucial role in the 5G networkwith particular emphasis on the O-RAN. For example, ML use can drive more efficient enhancements in 5G network planning, automation of network operations (e.g., provisioning, optimization, and fault prediction), network slicing, service quality prediction, and other applications and services [8, 3, 14, 20]. Conclusion In this work, we present results and analyses of three ML/AI supervised approaches applied to anomaly detection: Multilayer Perceptron, Decision Tree, and Support Vector Machine. The tests were conducted on an emulation testbed concerning a network environment dataset. The unsupervised ML/AI strategy, based on t-Distributed Stochastic Neighbor Embedding (tSNE), was used to create data labels. Results associated with the accuracy of the ML/AI algorithms were obtained, suggesting an excellent performance with an accuracy of above 90% for all cases. |