مقاله انگلیسی رایگان در مورد تشخیص هدف رادار روزنه مصنوعی – IEEE 2019

 

مشخصات مقاله
ترجمه عنوان مقاله تشخیص هدف رادار روزنه مصنوعی (SAR) بر اساس یادگیری انتقالی دامنه متقابل و وظیفه متقابل
عنوان انگلیسی مقاله SAR Target Recognition Based on Cross-Domain and Cross-Task Transfer Learning
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 9 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
4.641 در سال 2018
شاخص H_index 56 در سال 2019
شاخص SJR 0.609 در سال 2018
شناسه ISSN 2169-3536
شاخص Quartile (چارک) Q2 در سال 2018
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی برق،مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های مرتبط برق مخابرات، شبکه های کامپیوتری
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی – IEEE Access
دانشگاه  School of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
کلمات کلیدی رادار روزنه مصنوعی، تشخیص هدف، شبکه عصبی پیچشی، یادگیری متا، سازگاری دامنه مخالف
کلمات کلیدی انگلیسی  Synthetic aperture radar (SAR), target recognition, convolutional neural network (CNN), meta-learning, adversarial domain adaptation
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2019.2948618
کد محصول  E13898
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
I. Introduction
II. Methodology
III. Experimental Results
IV. Conclusion
Authors
Figures
References

 

بخشی از متن مقاله:
Abstract

Inspired by their tremendous success in optical image detection and classification, convolutional neural networks (CNNs) have recently been used in synthetic aperture radar automatic target recognition (SAR-ATR). Although CNN-based methods can achieve excellent recognition performance, it is difficult to collect a large number of real SAR images available for training. In this paper, we introduce simulated SAR data to alleviate the problem of insufficient training data. To address domain shift and task transfer problems caused by differences between simulated and real data, we propose a model that integrates meta-learning and adversarial domain adaptation. We use sufficient simulated data and a few real data to pre-train the model. After fine-tuning, the pre-trained model can quickly adapt to new tasks in real data. Extensive experimental results obtained in the real SAR dataset demonstrate that our model effectively solves the cross-domain and cross-task transfer problem. Compared with conventional SAR-ATR methods, the proposed model can achieve better recognition performance with a small amount of training data.

Introduction

Synthetic aperture radar (SAR) is an active sensor mounted on moving platforms such as aircraft, satellites, and spaceships. SAR provides two-dimensional high-resolution images by receiving the electromagnetic echoes of targets. Benefiting from its unique imaging mechanism, SAR can operate day and night, independent of weather conditions, and has specific surface penetration capability. The SAR system has unique advantages in many applications, ranging from disaster monitoring and resource exploration to military inspection, and it plays an unreplaceable role in both military and civilian fields. Automatic target recognition (ATR) is an essential topic in the field of SAR application research. According to different implementation methods, classic ATR methods can be classified into feature-based and model-based approaches. Feature-based methods extract discriminative features, such as binary regions [1], target contours [2], monogenic signals [3], [4], projection features [5], [6], and tensor decomposition features [7] from images. Classifiers such as K-nearest neighbor (KNN) [8], support vector machine (SVM) [9], the Bayesian classifier [10], and the sparse representation classifier [11] have been developed to classify the extracted features. Both feature extraction and classification require careful selection by experienced researchers. Model-based methods [12]–[14] focus on the electromagnetic scattering features of a target, which are related to the physical characteristics of the target.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا