مقاله انگلیسی رایگان در مورد ساخت و مدیریت ارزش های زبانی – IEEE 2019

 

مشخصات مقاله
ترجمه عنوان مقاله ساخت و مدیریت ارزش های زبانی چند دانه ای بر اساس اصطلاحات زبانی و مجموعه های فازی آنها
عنوان انگلیسی مقاله Constructing and Managing Multi-Granular Linguistic Values Based on Linguistic Terms and Their Fuzzy Sets
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 16 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
4.641 در سال 2018
شاخص H_index 56 در سال 2019
شاخص SJR 0.609 در سال 2018
شناسه ISSN 2169-3536
شاخص Quartile (چارک) Q2 در سال 2018
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی – IEEE Access
دانشگاه  School of Science, Xihua University, Chengdu 610039, China
کلمات کلیدی متغیر زبانی، حصار زبانی، اصطلاح زبانی دوتایی، ارزش های زبانی چند دانه ای، تصمیم گیری زبانی
کلمات کلیدی انگلیسی  Linguistic variable, linguistic hedge, 2-tuple linguistic term, multi-granular linguistic values, linguistic decision making
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2019.2948847
کد محصول  E13894
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
I. Introduction
II. Preliminaries
III. Formal Linguistic Concept of Linguistic Value
IV. The Formal 2-Tuple Linguistic Concept
V. The Hierarchy of Formal Linguistic Concepts
Authors
Figures
References

 

بخشی از متن مقاله:
Abstract

Constructing and managing multi-granular linguistic values are more and more important for linguistic decision making in big data or social computing environments, linguistic variable is the fundamental of constructing and managing multi-granular linguistic values. Based on analysis of linguistic values and drawbacks of symbolic or fuzzy set methods in processing linguistic information, a linguistic value is expressed by a formal linguistic concept, which is constructed by a linguistic term and it’s fuzzy sets, i.e., intension (name) and extension (meaning) of the concept are a linguistic term and it’s fuzzy sets. A new symbolic translation based on fuzzy sets is provided to obtain formal 2-tuple linguistic concepts, which are continuous formal linguistic concepts. By using linguistic hedges, the hierarchy of multi-granular formal linguistic concepts is constructed, and managing multi-granular linguistic values is carried out by a new transformation function between formal linguistic concepts of the hierarchy. Cases study shows that the proposed method combines advantages of symbolic approaches and fuzzy set methods in linguistic information processing and overcomes their drawbacks due to fuzzy sets and linguistic term as entity in linguistic information processing based on formal linguistic concepts, intensions are utilized to deal with linguistic information and extensions are used to represent meanings and obtain natural or artificial language concepts. It seems that constructing and managing multi-granular linguistic values via formal linguistic concepts is an useful and alternative method in linguistic information processing.

Introduction

The concept of linguistic variable plays a pivotal role in all applications of fuzzy logic, especially in computing with words or linguistic information processing [3]–[6]. Formally, linguistic variable is defined as [7]: A linguistic variable is characterized by a quintuple (L, H, U, G, M), in which L is the name of the variable; H denotes the term set of L, i.e., the set of names of linguistic values of L, with each value being a fuzzy variable denoted generically by X and ranging across a universe of discourse U which is associated with the base variable u; G is a syntactic rule (which usually takes the form of a grammar) for generating the names of values of L; and M is a semantic rule for associating its meaning with each L, M(X), which is a fuzzy subset of U. For example, height is a linguistic variable defined on the universe (0, 2.5m] and high is a linguistic value of height, the trapezoidal fuzzy set µhigh(u) = (1.7, 1.9, 2.5, 2.5) on (0, 2.5m] can be a semantic value or meaning of high. In practical applications, high can be utilized to express qualitative knowledge ‘‘Europeans are high’’ and meaning of high can be represented by µhigh(u), due to calculable character of fuzzy sets, linguistic knowledge ‘‘Europeans are high’’ can be further processed by using µhigh(u) in a knowledge system.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا