مقاله انگلیسی رایگان در مورد تشخیص و طبقه بندی خودکار ترک سنگفرش – IEEE 2019

 

مشخصات مقاله
ترجمه عنوان مقاله تشخیص و طبقه بندی خودکار ترک سنگفرش با استفاده از شبکه توجه به ویژگی چند مقیاسی
عنوان انگلیسی مقاله Automatic Pavement Crack Detection and Classification Using Multiscale Feature Attention Network
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 12 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
4.641 در سال 2018
شاخص H_index 56 در سال 2019
شاخص SJR 0.609 در سال 2018
شناسه ISSN 2169-3536
شاخص Quartile (چارک) Q2 در سال 2018
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی فناوری اطلاعات، زمین شناسی
گرایش های مرتبط شبکه های کامپیوتری، زمین شناسی مهندسی
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی – IEEE Access
دانشگاه  School of Geomatics, Liaoning Technical University, Fuxin 123000, China
کلمات کلیدی تشخیص ترک سنگفرش، طبقه بندی ترک، شبکه عصبی پیچشی، استخراج ویژگی چند مقیاسی، مکانیسم توجه
کلمات کلیدی انگلیسی  Pavement crack detection, crack classification, convolutional neural network, multiscale feature extraction, attention mechanism
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2019.2956191
کد محصول  E14056
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
I. Introduction
II. Materials and Methods
III. Experiment and Analysis
IV. Discussion
V. Conclusion
Authors
Figures
References

 

بخشی از متن مقاله:
Abstract

Pavement crack detection and characterization is a fundamental part of road intelligent maintenance systems. Due to the high non-uniformity of cracks, topological complexity, and similar noise from crack texture, the challenge arises in this domain with automated crack detection and classification in a complex environment. In this work, an overarching framework for a universal and robust automatic method that simultaneously characterizes the type of crack and its severity level was developed. For crack detection, we propose a novel and efficient crack detection network that captures the crack context information by establishing a multiscale dilated convolution module. On this foundation, an attention mechanism is introduced to further refine the high-level features. Moreover, the rich features at different levels are fused in an upsampling module to generate more detailed crack detection results. For crack classification, a novel characterization algorithm is developed to classify the type of crack after detection. The crack segment branches are then merged and classified into four types: transversal, longitudinal, block, and alligator; the severity levels of cracks are assessed by calculating the average width and distance between the crack branches. The proposed crack detection method effectively detects crack information in a complex environment, and achieves the current state-of-the-art accuracy. Compared to manual classification results, the classification accuracy of transversal and longitudinal cracks is higher than 95%, and the classification accuracy of block and alligator is above 86%.

Introduction

Automatic detection and classification of pavement cracks is an important part of intelligent transportation systems and acts as a primary rapid analysis of pavement distresses. The implementation of a fast and accurate automatic pavement crack detection system is essential for maintaining and monitoring complex transportation networks, and is an effective way to improve the road service quality [1]. Pavement crack automatic detection and characterization systems perform three primary tasks: data acquisition, crack detection, and crack classification. With the development of mobile mapping technology and hardware storage devices, fast acquisition devices are becoming more widely used in pavement distress screening [2] as they can quickly obtain road distress data. Fig. 1(a) shows a road surface image acquisition device installed on a roof, whereas Fig. 1(b) is a pavement image taken vertically, which can be used to measure the crack location and for qualitative analysis. In recent years, a numerous experts and scholars have devoted themselves to researching automatic detection of pavement cracks, and have obtained promising research results [3], [4]. At present, the research on automatic detection of pavement cracks is roughly divided into three methods: traditional image processing methods, machine learning methods, and deep learning methods.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا