مشخصات مقاله | |
ترجمه عنوان مقاله | تشخیص و طبقه بندی خودکار ترک سنگفرش با استفاده از شبکه توجه به ویژگی چند مقیاسی |
عنوان انگلیسی مقاله | Automatic Pavement Crack Detection and Classification Using Multiscale Feature Attention Network |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 12 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.641 در سال 2018 |
شاخص H_index | 56 در سال 2019 |
شاخص SJR | 0.609 در سال 2018 |
شناسه ISSN | 2169-3536 |
شاخص Quartile (چارک) | Q2 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی فناوری اطلاعات، زمین شناسی |
گرایش های مرتبط | شبکه های کامپیوتری، زمین شناسی مهندسی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | School of Geomatics, Liaoning Technical University, Fuxin 123000, China |
کلمات کلیدی | تشخیص ترک سنگفرش، طبقه بندی ترک، شبکه عصبی پیچشی، استخراج ویژگی چند مقیاسی، مکانیسم توجه |
کلمات کلیدی انگلیسی | Pavement crack detection, crack classification, convolutional neural network, multiscale feature extraction, attention mechanism |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2956191 |
کد محصول | E14056 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I. Introduction II. Materials and Methods III. Experiment and Analysis IV. Discussion V. Conclusion Authors Figures References |
بخشی از متن مقاله: |
Abstract
Pavement crack detection and characterization is a fundamental part of road intelligent maintenance systems. Due to the high non-uniformity of cracks, topological complexity, and similar noise from crack texture, the challenge arises in this domain with automated crack detection and classification in a complex environment. In this work, an overarching framework for a universal and robust automatic method that simultaneously characterizes the type of crack and its severity level was developed. For crack detection, we propose a novel and efficient crack detection network that captures the crack context information by establishing a multiscale dilated convolution module. On this foundation, an attention mechanism is introduced to further refine the high-level features. Moreover, the rich features at different levels are fused in an upsampling module to generate more detailed crack detection results. For crack classification, a novel characterization algorithm is developed to classify the type of crack after detection. The crack segment branches are then merged and classified into four types: transversal, longitudinal, block, and alligator; the severity levels of cracks are assessed by calculating the average width and distance between the crack branches. The proposed crack detection method effectively detects crack information in a complex environment, and achieves the current state-of-the-art accuracy. Compared to manual classification results, the classification accuracy of transversal and longitudinal cracks is higher than 95%, and the classification accuracy of block and alligator is above 86%. Introduction Automatic detection and classification of pavement cracks is an important part of intelligent transportation systems and acts as a primary rapid analysis of pavement distresses. The implementation of a fast and accurate automatic pavement crack detection system is essential for maintaining and monitoring complex transportation networks, and is an effective way to improve the road service quality [1]. Pavement crack automatic detection and characterization systems perform three primary tasks: data acquisition, crack detection, and crack classification. With the development of mobile mapping technology and hardware storage devices, fast acquisition devices are becoming more widely used in pavement distress screening [2] as they can quickly obtain road distress data. Fig. 1(a) shows a road surface image acquisition device installed on a roof, whereas Fig. 1(b) is a pavement image taken vertically, which can be used to measure the crack location and for qualitative analysis. In recent years, a numerous experts and scholars have devoted themselves to researching automatic detection of pavement cracks, and have obtained promising research results [3], [4]. At present, the research on automatic detection of pavement cracks is roughly divided into three methods: traditional image processing methods, machine learning methods, and deep learning methods. |