دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقالات پژوهشی کامپیوتردانلود رایگان مقالات ژورنالی کامپیوتردانلود رایگان مقالات سال 2019دانلود رایگان مقالات کنفرانسی کامپیوتردانلود رایگان مقاله ISI معماری سیستم های کامپیوتری به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی کامپیوتر به زبان انگلیسی سال 2022 و 2023سال انتشار

مقاله انگلیسی رایگان در مورد تکنیک های مختلف استخراج ویژگی – الزویر ۲۰۱۹

 

مشخصات مقاله
ترجمه عنوان مقاله مطالعه مقایسه ای تکنیک های مختلف استخراج ویژگی برای تشخیص عابر پیاده
عنوان انگلیسی مقاله Comparative Study of Various Feature Extraction Techniques for Pedestrian Detection
انتشار مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی ۷ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۱٫۲۵۷ در سال ۲۰۱۸
شاخص H_index ۴۷ در سال ۲۰۱۹
شاخص SJR ۰٫۲۸۱ در سال ۲۰۱۸
شناسه ISSN ۱۸۷۷-۰۵۰۹
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط معماری سیستم های کامپیوتری
نوع ارائه مقاله
ژورنال و کنفرانس
مجله / کنفرانس علوم کامپیوتر پروسیدیا – Procedia Computer Science
دانشگاه  PES UNIVERSITY, Bengaluru-85, India
کلمات کلیدی تشخیص عابر پیاده، الگوی دوگانه محلی متقارن مرکزی، ویژگی قدرتمند سریع، الگوی دوگانه محلی متقارن مرکزی قابل تعمیم، هیستوگرام شیب های جهت دار
کلمات کلیدی انگلیسی Pedestrian detection; center symmetric local binary pattern; speeded up robust feature; extended center symmetric local binary pattern; HOG
شناسه دیجیتال – doi
https://doi.org/10.1016/j.procs.2019.06.098
کد محصول  E12359
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

۱٫ Introduction

۲٫ Proposed Methodology

۳٫ Experimental Outcome and Discussion

۴٫ Conclusion

۵٫ References

 

بخشی از متن مقاله:
Abstract

This paper presents, feature extraction techniques such as center symmetric local binary pattern (CSLBP), extended CSLBP (XCSLBP), speeded-up robust feature (SURF) with 64 and 128 feature descriptors and histograms of oriented gradients (HOG) applied on a set of images from INRIA person database, to detect pedestrians. About fifteen feature sets created using different combinations of the aforementioned methods are compared using two detectors, random forest (RF) and support vector machine (SVM). Performance validation is done based on the accuracy, precision, recall and space required for storing feature vectors. Experimental results have shown that CSLBP and the novel XCSLBP+CSLBP feature sets yield 100% accuracy, when used with RF classifier, whereas, the novel SURF-128+XCSLBP combination and SVM linear classifier gave 99.2% accuracy in detecting pedestrians.

Introduction

Pedestrian detection is the most challenging intelligent system applications that would be helpful in advanced driver-assistance systems (ADAS). This need to detect pedestrians is quenched with various recently proposed feature extraction and classification techniques, which can be used in the separating pedestrian images from nonpedestrian images. In the past, researchers have proposed several approaches for pedestrian detection and object detection in general. Histograms of oriented gradients (HOG)1 is one such feature extraction method, when applied in combination with linear support vector machine (SVM) on MIT pedestrian dataset close to perfect results were obtained. Furthermore, the performance of HOG was proved better using another dataset named ‘INRIA’, consisting of human images with different backgrounds and pose variations. The progress of pedestrian detection techniques in a span of ten years was studied in detail2 where HOG was the most widely used technique in combination with other methods.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا