مقاله انگلیسی رایگان در مورد منحنی هزینه به کارگیری فناوری بازیابی آب اضافه شده با دی اکسید کربن – الزویر ۲۰۱۹

مقاله انگلیسی رایگان در مورد منحنی هزینه به کارگیری فناوری بازیابی آب اضافه شده با دی اکسید کربن – الزویر ۲۰۱۹

 

مشخصات مقاله
ترجمه عنوان مقاله منحنی هزینه به کارگیری فناوری بازیابی آب اضافه شده با دی اکسید کربن در مقیاس بزرگ در صنایع شیمایی مدرن زغال در چین
عنوان انگلیسی مقاله Cost curve of large-scale deployment of CO2-enhanced water recovery technology in modern coal chemical industries in China
انتشار مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی ۱۷ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۴٫۰۲۳ در سال ۲۰۱۹
شاخص H_index ۱۰۷ در سال ۲۰۲۰
شاخص SJR ۱٫۱۳۱ در سال ۲۰۱۹
شناسه ISSN ۱۷۵۰-۵۸۳۶
شاخص Quartile (چارک) Q1 در سال ۲۰۱۹
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط اقتصاد، محیط زیست، کشاورزی
گرایش های مرتبط اقتصاد انرژی، آلودگی محیط زیست، آلودگی هوا، اقتصاد منابع طبیعی و محیط زیست
نوع ارائه مقاله
ژورنال
مجله  مجله بین المللی کنترل گازهای گلخانه ای – International Journal of Greenhouse Gas Control
دانشگاه  , Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, China
کلمات کلیدی  رابطه دی اکسید کربن و آب، بازیابی آب اضافه شده با دی اکسید کربن، صنایع شیمایی مدن زغال، ارزیابی اقتصادی – فنی، ارتباط مبدا با مقصد، منحنی هزینه
کلمات کلیدی انگلیسی CO2-Water nexus, CO2-enhanced water recovery, Modern coal chemical industry, Techno-economic evaluation, Source–sink matching, Cost curve
شناسه دیجیتال – doi
https://doi.org/10.1016/j.ijggc.2018.12.012
کد محصول E15056
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

۱٫ Introduction

۲٫ Evaluation framework

۳٫ Evaluation results and discussion

۴٫ Conclusions

References

بخشی از متن مقاله:

Abstract

China has emerged as a world leader in the coal chemical industry, which requires large amount of water and results in considerable CO2 emissions. This situation has led to the challenge of the CO2-Water nexus for China and particularly for the sustainable development of its coal chemical industry. CO2-enhanced water recovery (CO2-EWR) technology can provide large-scale CO2 mitigation and additional water supply in an integrated manner, especially in arid areas. Meanwhile, CO2 streams from industrial separation processes in the coal chemical industries are amenable to separation and can dramatically simplify or even dispense with the capture process. This study presents the first systematic assessment of a cost curve for onshore CO2-EWR potential using CO2 streams from industrial separation processes by an evaluation framework encompassing CO2 emission inventory, site suitability evaluation, and source–sink matching with techno-economic models. Preliminary results focused on the full capacity of several coal chemical processes as of 2015 suggest that CO2-EWR technology can mitigate 269 million tons of CO2 from industrial separation processes at relatively low cost ranging from 12 to 30 USD/t CO2 in China. Furthermore, 404 million tons of underground water could be produced for further desalination and utilization. When additional capacity under development could become fully operational, the emissions of 878 million tons of CO2 could be mitigated and provide 1318 million tons of vital water resources. Therefore, CO2-EWR technology can be essential to clean and sustainable development of the coal chemical industry and may provide low-cost opportunities to accelerate the deployment of large-scale CCUS projects in China.

Introduction

China’s abundant coal reserves and urgent concerns about energy security and economic development have driven local governments in coal-rich regions to invest in coal chemical technology. China has emerged as a world leader in the coal chemical and coal conversion industry. However, the environmental impact resulting in huge CO2 emissions and water consumption caused by this dramatic development of the coal chemical industry are concerns for stakeholders, such as governments, investors, enterprises, and the public in China. Carbon capture, utilization and storage (CCUS) technology is an essential component to reduce CO2 emissions and produce value-added products on a meaningful scale. Among these options of CCUS technologies, CO2 capture and CO2 aquifer storage with CO2-enhanced water recovery (CO2-storage/CO2-EWR, abbreviated as CO2-EWR) are considered an effective approach to large-scale CO2 mitigation and water production with relatively high technology readiness levels and low cost, especially in arid regions with high water stress and high water price (Davidson et al., 2009; Davies et al., 2013; Kobos et al., 2011; Ziemkiewicz et al., 2015).

China’s abundant coal reserves and urgent concerns about energy security and economic development have driven local governments in coal-rich regions to invest in coal chemical technology. China has emerged as a world leader in the coal chemical and coal conversion industry. However, the environmental impact resulting in huge CO2 emissions and water consumption caused by this dramatic development of the coal chemical industry are concerns for stakeholders, such as governments, investors, enterprises, and the public in China. Carbon capture, utilization and storage (CCUS) technology is an essential component to reduce CO2 emissions and produce value-added products on a meaningful scale. Among these options of CCUS technologies, CO2 capture and CO2 aquifer storage with CO2-enhanced water recovery (CO2-storage/CO2-EWR, abbreviated as CO2-EWR) are considered an effective approach to large-scale CO2 mitigation and water production with relatively high technology readiness levels and low cost, especially in arid regions with high water stress and high water price (Davidson et al., 2009; Davies et al., 2013; Kobos et al., 2011; Ziemkiewicz et al., 2015). pressure) (Feng et al., 2013; Meng et al., 2007; Zhao and Gallagher, 2007). This results in large quantities of high purity CO2 streams available from the coal chemical industry, and when combined with CO2-EWR offers an opportunity to address the energy-water-climate and economic challenges facing the coal chemical industry, large-scale deployment of CCUS technologies, and China’s low-carbon future (ADB, 2015; Zhang et al., 2013).

ثبت دیدگاه