دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقالات پژوهشی کامپیوتردانلود رایگان مقالات ژورنالی کامپیوتردانلود رایگان مقالات سال 2019دانلود رایگان مقاله ISI الگوریتم و محاسبات به زبان انگلیسیدانلود رایگان مقاله ISI معماری سیستم های کامپیوتری به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی کامپیوتر به زبان انگلیسی سال 2022 و 2023

مقاله انگلیسی رایگان در مورد سیستم های چندهسته ای غیرمتمرکز – الزویر ۲۰۱۹

 

مشخصات مقاله
ترجمه عنوان مقاله یک الگوریتم تحلیلی محاسبه محور برای سیستم های چندهسته ای غیر متمرکز
عنوان انگلیسی مقاله An analytic computation-driven algorithm for Decentralized Multicore Systems
انتشار  مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی  ۱۰ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۷٫۰۰۷ در سال ۲۰۱۸
شاخص H_index ۹۳ در سال ۲۰۱۹
شاخص SJR ۰٫۸۳۵ در سال ۲۰۱۸
شناسه ISSN ۰۱۶۷-۷۳۹X
شاخص Quartile (چارک) Q1 در سال ۲۰۱۸
رشته های مرتبط  مهندسی کامپیوتر
گرایش های مرتبط  الگوریتم ها و محاسبات، معماری سیستم های کامپیوتری
نوع ارائه مقاله
ژورنال
مجله / کنفرانس  سیستم های کامپیوتری نسل آینده-Future Generation Computer Systems
دانشگاه  Wenzhou Medical University, Wenzhou 325000, PR China
کلمات کلیدی  الگوریتم موازی، روش تجزیه دوتایی Adomian–Rach، سیستم های چندهسته ای غیر متمرکز، Adomian چند جمله ای
کلمات کلیدی انگلیسی Parallel algorithm، Adomian–Rach double decomposition method، Adomian polynomials، Decentralized Multicore Systems
شناسه دیجیتال – doi
https://doi.org/10.1016/j.future.2019.01.031
کد محصول  E12063
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
۱٫ Introduction
۲٫ Key parallel algorithms
۳٫ The application of the package AdomianPy
۴٫ Discussions
۵٫ Conclusion and future work
Acknowledgments
Appendix. The interface and usage of our package AdomianPy
References

 

بخشی از متن مقاله:

 Abstract

In the modern era, increasing numbers of cores per chip are applied for decentralized systems, but there is not any appropriate symbolic computation approach to construct multicore analytic approximation. Thus, it is essential to develop an efficient, simple and unified way for decentralized Adomian decomposition method to increase the potential speed of the multicore systems. In our paper, we present an innovative parallel algorithm of constructing analytic solutions for nonlinear differential system, which based on the Adomian–Rach double decomposition method and Rach’s Adomian polynomials. Based on our algorithm, we further developed a user-friendly Python software package to construct analytic approximations of initial or boundary value problems. Finally, the scope of validity of our Python software package is illustrated by several different types of nonlinear examples. The obtained results demonstrate the effectiveness of our package by compared with exact solution and numeric method, the characteristics of each class of Adomian polynomials and the efficiency of parallel algorithm with multicore processors. We emphasis that the super-linear speedup may happens for the duration of constructing approximate solutions. So, it can be considered as a promising alternative algorithm of decentralized Adomian decomposition method for solving nonlinear problems in science and engineering.

Introduction

A large number of enigmas in engineering, biology, economics and other disciplines, e.g. flow and heat transfer problem, the simulations of the immune system, control and optimization theory, bound price problem, are often modeled using a system of nonlinear problems [1–۵]. In particular, various kinds of decentralized systems, appeared in economics, medicine etc., are convenient and cost effective [6,7]. A wide range of analytic methods, like the Adomian decomposition method (ADM) [1,3], the perturbationincremental method [8], the variational iteration method [9], the homotopy perturbation method [10], etc., is a reliable and efficient technique to handle such problems. It should be mentioned that the ADM is among the most simple and effective analytic methods to construct approximations of nonlinear differential equations, and have been modified and improved by Adomian and his collaborator, like the Adomian–Rach double decomposition [1,11], etc. These modifications, in most cases, undoubtedly have provided higher accuracy and faster convergence in nonlinear differential equations [1,12]. Furthermore, the ADM, which have been proved that it works efficiently for a large number of nonlinear problems including fractional differential equations [13], even stochastic system [1], is easy to be implemented by various programming languages, such as Maple [13], Mathematics [14], etc.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا