مقاله انگلیسی رایگان در مورد طراحی تشخیص نفوذ مبتنی بر امضا بلاک چینی مشارکتی- الزویر ۲۰۱۹

elsevier

 

مشخصات مقاله
ترجمه عنوان مقاله طراحی تشخیص نفوذ مبتنی بر امضا بلاک چینی مشارکتی در محیط های اینترنت اشیا (IoT)
عنوان انگلیسی مقاله Designing collaborative blockchained signature-based intrusion detection in IoT environments
انتشار  مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی  ۱۵ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۷٫۰۰۷ در سال ۲۰۱۸
شاخص H_index ۹۳ در سال ۲۰۱۹
شاخص SJR ۰٫۸۳۵ در سال ۲۰۱۸
شناسه ISSN ۰۱۶۷-۷۳۹X
شاخص Quartile (چارک) Q1 در سال ۲۰۱۸
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط  هوش مصنوعی، امنیت اطلاعات
نوع ارائه مقاله
ژورنال
مجله / کنفرانس  سیستم های کیمپیوتری نسل آینده-Future Generation Computer Systems
دانشگاه Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
کلمات کلیدی  سیستم تشخیص نفوذ، اینترنت اشیا، تشخیص مبتنی بر امضا، شبکه مشارکتی، تکنولوژی بلاک چین، حملات خودی
کلمات کلیدی انگلیسی Intrusion Detection System, Internet-of-Things, Signature-based Detection, Collaborative Network, Blockchain Technology, Insider Attacks
شناسه دیجیتال – doi
https://doi.org/10.1016/j.future.2019.02.064
کد محصول  E12066
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
۱٫ Introduction
۲٫ Related work
۳٫ Our approach
۴٫ Evaluation
۵٫ Discussion and limitations
۶٫ Conclusion
Acknowledgments
References

 

بخشی از متن مقاله:

Abstract

With the rapid development of Internet-of-Things (IoT), there is an increasing demand for securing the IoT environments. For such purpose, intrusion detection systems (IDSs) are one of the most important security mechanisms, which can help defend computer networks including IoT against various threats. In order to achieve better detection performance, collaborative intrusion detection systems or networks (CIDSs or CIDNs) are often adopted in a practical scenario, allowing a set of IDS nodes to exchange required information with each other, e.g., alarms, signatures. However, due to the distributed nature, such kind of collaborative network is vulnerable to insider attacks, i.e., malicious nodes can generate untruthful signatures and share to normal peers. This may cause intruders to be undetected and greatly degrade the effectiveness of IDSs. With the advent of blockchain technology, it provides a way to verify shared signatures (rules). In this work, our motivation is to develop CBSigIDS, a generic framework of collaborative blockchained signature-based IDSs, which can incrementally build and update a trusted signature database in a collaborative IoT environment. CBSigIDS can provide a verifiable manner in distributed architectures without the need of a trusted intermediary. In the evaluation, our results demonstrate that CBSigIDS can enhance the robustness and effectiveness of signature-based IDSs under adversarial scenarios.

Introduction

The Internet-of-Things (IoT) refers to a system of internet-enabled computing devices, mechanical and digital machines, and objects that have the capability to transfer data over a network without requiring humanto-human or human-to-computer interaction [14]. More and more organizations are using IoT to improve their performance, i.e., operating more efficiently, better understanding, improving decision-making, etc. While the interrelated IoT devices are also threatened by many attacks, i.e., the threat-trend starts moving from manipulating information to controlling actuations [2]. To safeguard various IoT devices and critical infrastructures, intrusion detection systems (IDSs) are one of the most essential and important tools that can help identify potential anomalies and policy violations [37, 42]. Based on the deployment, an IDS can be classified as either host-based IDS (HIDS) that focuses on local system logs, or network-based IDS (NIDS) that monitors network state and traffic. Further, there are two typical detection approaches: signature-based detection and anomaly-based detection. The former like [50, 40] (also known as misuse detection) uses a signature matching process to compare the stored signatures and the observed events like payload and system record. The latter like [49, 12] identifies a potential threat by discovering a significant deviation between its pre-defined normal profile and the observed events for a period of time. If any security violations are found, an alarm would be sent to notify security administrators. Figure 1 depicts the high-level detection workflow of both signature-based and anomaly-based approach.one of the most essential and important tools that can help identify potential anomalies and policy violations [37, 42]. Based on the deployment, an IDS can be classified as either host-based IDS (HIDS) that focuses on local system logs, or network-based IDS (NIDS) that monitors network state and traffic. Further, there are two typical detection approaches: signature-based detection and anomaly-based detection. The former like [50, 40] (also known as misuse detection) uses a signature matching process to compare the stored signatures and the observed events like payload and system record. The latter like [49, 12] identifies a potential threat by discovering a significant deviation between its pre-defined normal profile and the observed events for a period of time. If any security violations are found, an alarm would be sent to notify security administrators. Figure 1 depicts the high-level detection workflow of both signature-based and anomaly-based approach.

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *