مقاله انگلیسی رایگان در مورد شرایط پایداری سیستم های زمان گسسته – IEEE 2019
مشخصات مقاله | |
ترجمه عنوان مقاله | نگرشی به شرایط پایداری سیستم های زمان گسسته با تأخیر متغیر زمانی |
عنوان انگلیسی مقاله | An Insight into Stability Conditions of Discrete-Time Systems With Time-Varying Delay |
انتشار | مقاله سال ۲۰۱۹ |
تعداد صفحات مقاله انگلیسی | ۷ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۴٫۶۴۱ در سال ۲۰۱۸ |
شاخص H_index | ۵۶ در سال ۲۰۱۹ |
شاخص SJR | ۰٫۶۰۹ در سال ۲۰۱۸ |
شناسه ISSN | ۲۱۶۹-۳۵۳۶ |
شاخص Quartile (چارک) | Q2 در سال ۲۰۱۸ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی برق |
گرایش های مرتبط | مهندسی کنترل |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou 221116, China |
کلمات کلیدی | سیستم زمان گسسته، کاربرد لیاپانوف، پایداری، نابرابری جمعی، تأخیر متغیر زمانی |
کلمات کلیدی انگلیسی | Discrete-time system, Lyapunov functional, stability, summation inequality, time-varying delay |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2949690 |
کد محصول | E13913 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I. Introduction II. The Main Result III. Further Verification With BRLS IV. Conclusion Authors References |
بخشی از متن مقاله: |
Abstract
This note studies an interesting phenomenon for stability conditions of discrete-time systems with time-varying delay. The underlying reason behind this phenomenon is revealed, and thereafter some conclusions are drawn: (i) Stability conditions of discrete-time systems with time-varying delay are generally divided into two types: those obtained by summation inequalities with free-matrix variables and those obtained by the combination of summation inequalities without free-matrix variables and the reciprocally convex lemma; (ii) The conservatism between the two types of stability conditions can not be theoretically compared. To clearly demonstrate this interesting phenomenon and meanwhile, to further verify these conclusions, several bounded real lemmas are obtained via different bounding-inequality methods and applied to a numerical example. Introduction Since time delay is often encountered in the real world such as network and mechanical engineering [1], [2], the stability analysis for discrete-time systems with time-varying delay has attracted considerable attention. Until now, many remarkable results have been reported in the literature [1]–[۳۹] such as the free-matrix-weighting technique [3], the delaypartitioning method [4], the bounding-equality method [1], [5]–[۷]. Compared with other techniques, the boundinginequality method, owing to its effectiveness and straightforwardness, has been widely used in the Lyapunov–Krasovskii (L–K) functional method. As far as the authors know, three bounding-inequality methods have been established to estimate the summation term δ(k). Owing to the conservatism of Jensen inequality [1], the Wirtinger-based summation inequality (WBSI) was proposed [8]–[۱۰]. Combined with the reciprocally convex lemma (RCL) [7], a more relaxed stability condition was obtained in [9]. This method is called WBSI + RCL method. Thereafter, a free-matrix-based summation inequality (FMBSI) was proposed by introducing some free matrix variables [11]. Based on FMBSI, a new stability condition was obtained in [11]. This method is called FMBSI method. Recently, an improved summation inequality was proposed in [12] by considering both δ۱(k) and δ۲(k) together. In fact, this inequality can be directly obtained by combining WBSI and the improved RCL (see (5) below). |