مقاله انگلیسی رایگان در مورد بهینه سازی چند منظوره احتمالی موثر سیستم های پیچیده – الزویر ۲۰۲۰

elsevier

 

مشخصات مقاله
ترجمه عنوان مقاله بهینه سازی چند منظوره احتمالی موثر سیستم های پیچیده با استفاده از شبکه بیزی مبتنی بر ماتریس
عنوان انگلیسی مقاله Efficient probabilistic multi-objective optimization of complex systems using matrix-based Bayesian network
انتشار مقاله سال ۲۰۲۰
تعداد صفحات مقاله انگلیسی ۱۲ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۶٫۴۷۱ در سال ۲۰۱۹
شاخص H_index ۱۳۳ در سال ۲۰۲۰
شاخص SJR ۱٫۹۲۵ در سال ۲۰۱۹
شناسه ISSN ۰۹۵۱-۸۳۲۰
شاخص Quartile (چارک) Q1 در سال ۲۰۱۹
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط مهندسی صنایع، مهندسی کامپیوتر
گرایش های مرتبط بهینه سازی سیستم ها، شبکه های کامپیوتری
نوع ارائه مقاله
ژورنال
مجله  مهندسی قابلیت اطمینان و ایمنی سیستم – Reliability Engineering & System Safety
دانشگاه University College London, London, UK
کلمات کلیدی بهینه سازی تقریبی، سیستم های پیچیده، نمودار تاثیر، شبکه بیزی مبتنی بر ماتریس (MBN)، تصمیم گیری چند منظوره، بهینه سازی سیستم
کلمات کلیدی انگلیسی Approximate optimization, Complex systems, Influence diagram, Matrix-based Bayesian network (MBN), Multi-objective decision-making, System optimization
شناسه دیجیتال – doi
https://doi.org/10.1016/j.ress.2020.106899
کد محصول E15100
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

۱٫ Introduction

۲٫ Quantification of influence diagram (ID) for complex systems using matrix-based Bayesian network (MBN)

۳٫ Proxy objective function for optimizing ID that has multiple strategically relevant decision variables

۴٫ Multi-objective optimization using proxy objective function

۵٫ Numerical examples

۶٫ Conclusions

Acknowledgement

References

بخشی از متن مقاله:

Abstract

For optimal design and maintenance of complex systems such as civil infrastructure systems or networks, the optimization problem should take into account the system-level performance, multiple objectives, and the uncertainties in various factors such as external hazards and system properties. Influence Diagram (ID), a graphical probabilistic model for decision-making, can facilitate modeling and inference of such complex problems. The optimal decision rule for ID is defined as the probability distributions of decision variables that minimize (or maximize) the sum of the expected values of utility variables. However, in a discrete ID, the interdependency between component events that arises from the definition of the system event, results in the exponential order of complexity in both quantifying and optimizing ID as the number of components increases. In order to address this issue, this paper employs the recently proposed matrix-based Bayesian network (MBN) to quantify ID for large-scale complex systems. To reduce the complexity of optimization to polynomial order, a proxy measure is also introduced for the expected values of utilities. The mathematical condition that makes the optimization problems employing proxy objective functions equivalent to the exact ones is derived so as to promote its applications to a wide class of problems. Moreover, the proposed proxy measure allows the analytical evaluation of a set of non-dominated solutions in which the weighted sum of multiple objective values is optimized. By using the strategies developed to compensate the errors by the approximation as well as the weighted sum formulation, the proposed methodology can identify even a larger set of non-dominated solutions than the exact objective function of weighted sum. Four numerical examples demonstrate the accuracy and efficiency of the proposed methodology.

Introduction

In various efforts to construct, operate, and maintain real-world complex systems such as civil infrastructures and their networks, it is crucial to identify optimal decision-making strategies especially when budgets are limited. When dealing with such systems, the optimization should be able to take into account not only the performance of individual components but also the system-level performance. However, mathematical formulations for the system-level optimization are not straightforward in general. In addition, for large-scale systems, multiple random variables (r.v.’s) are introduced to represent both external factors (e.g. natural or man-made hazards and deterioration-inducing environment) and internal factors (e.g. material or geometric properties of components and system), for which a high-dimensional joint probability distribution needs to be constructed. Probabilistic graphical models (PGMs) can be employed to this end, which can translate realworld causal relationships into mathematical representations [1,2].

Bayesian network (BN) is one of the most widely used PGMs, which facilitates the modeling of causal relationships between r.v.’s as a joint probability distribution by use of nodes and directed arrows (Fig. 1(a)). On the other hand, Influence Diagram (ID) is an extension of BN for the purpose of decision-making in which two additional types of variables are introduced, namely, decision and utility variables (Fig. 1(b)). As the terms imply, decision variables represent the decision alternatives while utility variables quantify the utilities of each instance of interest. The optimal decision rule for an ID is defined as the probability mass functions (PMFs) of decision variables that minimize (or maximize) the sum of the expectations of utility variables. Discrete BN and ID in which all r.v.’s are discrete, allow us to develop inference algorithms that are flexible and widely applicable.

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *