مشخصات مقاله | |
ترجمه عنوان مقاله | تجزیه و تحلیل امرژی متابولیسم آب شیرین شهری: یک مطالعه موردی در پکن (چین) |
عنوان انگلیسی مقاله | Emergy analysis of urban domestic water metabolism: A case study in Beijing (China) |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 11 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
7.096 در سال 2018 |
شاخص H_index | 150 در سال 2019 |
شاخص SJR | 1.620 در سال 2018 |
شناسه ISSN | 0959-6526 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی محیط زیست، مهندسی عمران |
گرایش های مرتبط | آب و فاضلاب، مهندسی و مدیریت منابع آب |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | مجله تولید پاک – Journal of Cleaner Production |
دانشگاه | State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China |
کلمات کلیدی | امرژی، جزئیات داده، سیستم های متابولیکی آب، پکن، تامین آب |
کلمات کلیدی انگلیسی | Emergy، Data elaboration، Water metabolic systems، Beijing، Water supply |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jclepro.2019.06.231 |
کد محصول | E13057 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Methods 3. Results 4. Discussion 5. Conclusion Acknowledgements References |
بخشی از متن مقاله: |
Abstract
This work elaborated an analysis of urban water metabolic system. The system’s flows and processes were modeled and accounted on the basis of the ecosystem cumulative energy availability, also known as emergy. In detail, both the urban domestic water supplying process metabolism model and accounting framework were defined. Then, the whole process of the supplying of domestic water was analyzed, considering Beijing (China) as a case study. In particular, the existing water sources were included: surface water, underground water, water of the South-to-North Water Transfer Project; potential desalinated water from Tianjin. The results showed that, for the supply of 1 m3 of tap water, the total emergy input from the above-mentioned four sources are 3.22Eþ12, 3.34Eþ12, 4.55Eþ12, and 12.55Eþ12 sej. These values reflect the different energy costs of the existing supply systems, that are related to water transportation, treatment and distribution, Moreover, the emergy cost of desalinated water is about 4 times higher than the one of surface water. Conversely, the value of South-to-North Water Transfer Project is not much higher than that of surface water. Finally, the higher costs are related to the water treatment phase. Consequently, some policy recommendations and future research directions are identified for improving the sustainability for Beijing domestic water supply. Introduction Finite water resources, increasing demands and aging water infrastructures are some of the greatest challenges for China and many other regions of the world. The rapid increase in water demand and the reduction of the fresh water supply, resulting in water shortages, are now a serious problem in many countries (Wang et al., 2016). The United Nations Educational, Scientific, and Cultural Organization (UNESCO) predicts that global water demand will increase by 44% in 2050, with residential water growing nearly 1.5-fold (UNESCO, 2014). Without a constant supply of water, human society cannot smoothly and continuously develop (Chen et al., 2016). Urban areas are especially vulnerable to these problems, due to their higher population density. This is why, nowadays, an accurate planning for a sustainable use of water resources is of paramount importance. With this respect, complex water issues cannot be solved applying a chambered water management approach, especially at the urban scale. For example, Hu et al. (2013) showed that the majority of the present water consumption in Beijing was due to family use, i.e., domestic water. Before the operation of the South-North Water Transfer Project (SNWTP) in 2014, Beijing’s water mainly came from the local surface water and groundwater. However, this limited supply couldn’t meet the growing demands. As an “alternative source” of traditional surface water and groundwater, SNWTP greatly alleviated the pressures on the Beijing water supply. In a water-connected world, sustainable solutions would require a system-based approach. In particular, water services (traditionally: wastewater, stormwater, and drinking water) should be integrated with the effort of maximizing the recovery of resources (i.e.: energy, nutrients, materials, and, obviously, water). The United States Environmental Protection Agency (US EPA) Safe and Sustainable Water Resources (SSWR) research program represented an example of a holistic approach to water resources management. |