مقاله انگلیسی رایگان در مورد بهینه سازی انرژی و مدلسازی پیش بینی صنایع پتروشیمی – الزویر ۲۰۲۰

elsevier

 

مشخصات مقاله
ترجمه عنوان مقاله بهینه سازی انرژی و مدلسازی پیش بینی صنایع پتروشیمی: یک شبکه عصبی پیچشی پیشرفته مبتنی بر ویژگی متقابل
عنوان انگلیسی مقاله Energy optimization and prediction modeling of petrochemical industries: An improved convolutional neural network based on cross-feature
انتشار مقاله سال ۲۰۲۰
تعداد صفحات مقاله انگلیسی ۲۹ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۶٫۹۴۷ در سال ۲۰۱۹
شاخص H_index ۱۷۳ در سال ۲۰۲۰
شاخص SJR ۲٫۱۶۶ در سال ۲۰۱۹
شناسه ISSN ۰۳۶۰-۵۴۴۲
شاخص Quartile (چارک) Q1 در سال ۲۰۱۹
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط مهندسی انرژی، مهندسی شیمی، مهندسی کامپیوتر
گرایش های مرتبط سیستم های انرژی، پتروشیمی، مهندسی الگوریتم و محاسبات
نوع ارائه مقاله
ژورنال
مجله  انرژی – Energy
دانشگاه  Beijing University of Chemical Technology, Beijing, China
کلمات کلیدی مدلسازی پیش بینی تولید؛ بهینه سازی انرژی؛ کاهش انتشار کربن؛ شبکه عصبی پیچشی؛ ویژگی متقابل؛ صنایع پتروشیمی
کلمات کلیدی انگلیسی Production prediction modeling; Energy optimization; Carbon emissions reduction; Convolutional neural network; Cross-feature; Petrochemical industry
شناسه دیجیتال – doi
https://doi.org/10.1016/j.energy.2019.116851
کد محصول E15050
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

۱٫ Introduction

۲٫ Related work

۳٫ Convolutional neural network integrating cross-feature

۴٫ Benchmark verification of UCI data sets

۵٫ Case study: energy optimization and prediction modeling of petrochemical industries

۶٫ Conclusion

Acknowledgments

References

بخشی از متن مقاله:

Abstract

The petrochemical industry is the top priority of the national economy and sustainable development. For the purpose of improving the energy efficiency in the petrochemical industry, an energy optimization and prediction model based on the improved convolutional neural network (CNN) integrating the cross-feature (CF) (CF-CNN) is proposed. The CF can combine the correlation between features to obtain the input of the CNN, which can avoid over-fitting problems caused by fewer features. Then the CNN is designed as a threelayer structure and the Rectified Linear Unit (ReLU) is introduced to achieve better generalization capability and stability with boiler fluctuations in the petrochemical industry. The developed method has better performances of modeling accuracy and applicability than that of the back-propagation (BP) neural network and the extreme learning machine (ELM) on University of California Irvine (UCI) benchmark datasets. Furthermore, the developed method is applied to establish an energy optimization and prediction model of ethylene production systems in the petrochemical industry. The experimental results testify the capability of the proposed method. Meanwhile, the average relative generalization error is 2.86%, and the energy utilization efficiency increases by 6.38%, which leads to reduction of the carbon emissions by 5.29%.

Introduction

The petrochemical industry is the top priority of the national economy and sustainable development. And the ethylene industry is a key part of complex petrochemical production industry. Currently, the ethylene is one of the demanding basic chemical materials [1] and the ethylene production consumes more than 15% of energy (including fuels and materials) in thousands of chemical products [2]. However, when the ethylene is produced by cracking, the total energy loss exceeds 45% [3]. Along with China’s rapid development, the total ethylene production capacity in 2017 increased to 23.21 million tons and the ethylene equivalent consumption grew up to 10% [4].

However, the fast growth of the ethylene production leads to the increase of the energy consumption and carbon emissions, and reduction of the ethylene production efficiency. Therefore, how to increase the ethylene production efficiency and reduce the carbon emissions has become a problem in the world. Nowadays, with the high-speed development of artificial intelligence, more and more energy optimization and analysis models have been used to raise productivity and energy efficiency in complex petrochemical processes. Geng et al. developed an artificial neural network (ANN) based on self-organizing cosine similarity, which overcame shortcomings of the single-hidden layer network in building the ethylene production prediction model [5]. An index decomposition analysis (IDA) method, combined with an ANN and a data envelopment analysis (DEA) was proposed by Olanrewaju et al. to assess energy consumption [6] and the energy capacity of industry in South African [7]. However, the process of extracting features in experiments is very complicated and the above models are not stable for fluctuations in complex industrial production.

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد.