مشخصات مقاله | |
ترجمه عنوان مقاله | به روز رسانی مدل عنصر محدود با استفاده از بهینه سازی قطعی: یک رویکرد جستجوی الگوی جهانی |
عنوان انگلیسی مقاله | Finite element model updating using deterministic optimisation: A global pattern search approach |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 9 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.604 در سال 2018 |
شاخص H_index | 114 در سال 2019 |
شاخص SJR | 1.628 در سال 2018 |
شناسه ISSN | 0141-0296 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | ریاضی |
گرایش های مرتبط | آنالیز عددی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | سازه های مهندسی – Engineering Structures |
دانشگاه | Leibniz University Hannover/ForWind, Institute of Structural Analysis, Appelstraße 9A, 30167 Hannover, Germany |
کلمات کلیدی | بهینه سازی قطعی، روش های عاری از مشتق، روش عنصر محدود، به روز رسانی مدل، توربین بادی، تیغه های روتور |
کلمات کلیدی انگلیسی | Deterministic optimisation، Derivative-free methods، Finite element method، Model updating، Wind turbine، Rotor blades |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.engstruct.2019.05.047 |
کد محصول | E12435 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Global pattern search algorithm 3. Finite element model updating 4. Results 5. Summary and outlook Acknowledgments Supplementary material References |
بخشی از متن مقاله: |
Abstract
With this work, we present a novel derivative-free global optimisation approach for finite element model updating. The aim is to localise structural damage in a wind turbine rotor blade. For this purpose, we create a reference finite element model of the blade as well as a model with a fictitious damage. To validate the approach, we use a model updating scheme to locate the artificially induced damage. This scheme employs numerical optimisation using the parameterised finite element model and an objective function based on modal parameters. Metaheuristic algorithms are the predominant class of optimisers for global optimisation problems. With this work, we show that deterministic approaches are competitive for engineering problems such as model updating. The proposed optimisation algorithm is deterministic and a generalisation of the pattern search algorithm. It picks up features known from local deterministic algorithms and transfers them to a global algorithm. We demonstrate the convergence, discuss the numerical performance of the proposed optimiser with respect to several analytical test problems and propose a possible trade-off between parallelisation and convergence rate. Additionally, we compare the numerical performance of the proposed deterministic algorithm concerning the model updating problem to the performance of well-established metaheuristic and local optimisation algorithms. The introduced algorithm converges quickly on test functions as well as on the model updating problem. In some cases, the deterministic algorithm outperforms metaheuristic algorithms. We conclude that deterministic optimisation algorithms should receive more attention in the field of engineering optimisation. Introduction For optimisation tasks considering non-linear problems, derivativefree global algorithms are particularly suited. Objective functions of such problems often involve transient numerical simulations or discrete and non-linear evaluations. This is why it is usually not possible to find a direct solution for the derivative of such objective functions. We concentrate on derivative-free algorithms, since obtaining derivatives in a numerically complex design variable space is challenging. Indeed, derivatives can easily be obtained numerically by using singlesided or symmetric sampling around a base point. The Hessian matrix needed for sequential quadratic programming [1] is commonly obtained by this method. However, numerical noise and the difficulty to receive an appropriate value for the step size necessitate some numerical experiments to yield a stable optimisation. Derivative-free methods are thus desirable due to the numerical robustness they provide. Most commonly used derivative-free algorithms are metaheuristic. This means that they rely on pseudo-random numbers in order to stochastically explore the design variable space of the underlying problem. Examples of this class of algorithms are genetic algorithms [2], particle swarm optimisation [3] or harmony search [4]. More recent contributions also include algorithms inspired by biological phenomena and swarm intelligence like whale optimisation [5], bacterial foraging optimisation [6], anarchic society optimisation [7] or social-spider optimisation [8]. |