مقاله انگلیسی رایگان در مورد انتقال حرارت و جرم سطح خراشیده مبدل حرارتی – الزویر ۲۰۲۱
مشخصات مقاله | |
ترجمه عنوان مقاله | انتقال حرارت و جرم سطح خراشیده مبدل حرارتی استفاده شده در تعلیق انجماد غلیظ |
عنوان انگلیسی مقاله | Heat and mass transfer of scraped surface heat exchanger used for suspension freeze concentration |
انتشار | مقاله سال ۲۰۲۱ |
تعداد صفحات مقاله انگلیسی | ۸ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۴٫۹۰۴ در سال ۲۰۱۹ |
شاخص H_index | ۱۶۷ در سال ۲۰۲۰ |
شاخص SJR | ۱٫۳۳۸ در سال ۲۰۱۹ |
شناسه ISSN | ۰۲۶۰-۸۷۷۴ |
شاخص Quartile (چارک) | Q1 در سال ۲۰۱۹ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی مکانیک |
گرایش های مرتبط | تبدیل انرژی، تاسیسات حرارتی و برودتی، مکانیک سیالات |
نوع ارائه مقاله |
ژورنال |
مجله | مجله مهندسی غذا – Journal of Food Engineering |
دانشگاه | University of Technology, Dongguan City, China |
کلمات کلیدی | تلغیظ انجماد چند گذری، آبمیوه سیب، توقف بلوری شدن، مدلسازی، انتقال حرارت و جرم، سطح خراشیده مبدل حرارتی |
کلمات کلیدی انگلیسی | Multi-pass freeze concentration, Apple juice, Suspension crystallization, Modeling, Heat and mass transfer, Scraped surface heat exchanger |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jfoodeng.2020.110141 |
کد محصول | E15107 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
۱٫ Introduction ۲٫ Experimental apparatus and procedure ۳٫ Modeling and calculation methodology ۴٫ Experimental results and discussion ۵٫ Conclusion Acknowledgments References |
بخشی از متن مقاله: |
Abstract Freeze concentration (FC) by suspension crystallization is a complex process due to the combination of a scrapedsurface heat exchanger, crystallizer, and wash column. Following the study of a three-in-one structure of a multipass FC published earlier this year, modeling and experiments of the heat and mass transfer of this freeze concentrator are presented in this paper. The experimental assessment of the system performance, including the measured values of the heat transfer coefficient, ice production rate, and energy efficiency as well as their correlation with the concentration ratio and partition coefficient are presented in this article. Introduction Freeze concentration (FC) is a nonthermal processing technology of liquid food, in which a portion of the water in the aqueous solution is frozen and converted into relatively pure ice crystals, after which it is removed from the liquid phase to concentrate the remaining solution. It can be used to concentrate or pre-concentrate heat-sensitive aqueous solutions, such as milk (Habib and Farid, 2007; Sanchez et al., 2011), fresh fruit juices (Orellana-Palma et al., 2017; Petzold et al., 2013; Bayindirli et al., 1993), other liquid foods (Moreno et al., 2014a), and biological solutions (Moreno et al., 2014b). Studies have shown that compared with evaporation concentration, FC has the advantage of producing less thermal denaturation of the solution, and thus, it can better maintain the original flavor, nutrition, and color of liquid foods (Benedetti et al., 2015; Moreno et al., 2014c; Miyawaki et al., 2016a). Moreover, the latent heat of water freezing is almost one seventh of the latent heat of water evaporation (Lide and Haynes, 2010), which offers potential for energy savings for de-watering of aqueous solutions. Ice crystals can be formed from aqueous solutions in two ways: progressive crystallization (Miyawaki et al., 2005, 2016b; Zambrano et al., 2018) and suspension crystallization (Huige and Thijssen, 1972; Qin et al., 2007). In the former, the water freezes on the cooling surface, forming an ice layer progressively and a concentrated liquid phase. Thus, it is also known as layer crystallization. This method of FC is called progressive FC. When the ice layer extends to the entire vessel to form an ice block, it is known as block FC (Moreno et al., 2014c; Zambrano et al., 2018). The advantage of this technology is the low equipment cost and simple operation management. However, the ice layer has a poor heat transfer coefficient of less than 0.1 kW m 2 K 1 (Qin et al., 2003a; Pronk et al., 2010; Hasan et al., 2017), and a huge cooling surface area is required for practical applications. In addition, the ice layer tends to entrain liquid sacs and causes severe solute loss (Miyawaki et al., 2016a, 2016b; Samsuri et al., 2015). |