دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقالات پژوهشی کامپیوتردانلود رایگان مقالات پژوهشی مهندسی فناوری اطلاعات ITدانلود رایگان مقالات ژورنالی کامپیوتردانلود رایگان مقالات ژورنالی مهندسی فناوری اطلاعات ITدانلود رایگان مقالات سال 2019دانلود رایگان مقاله ISI اینترنت و شبکه های گسترده به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی فناوری اطلاعات به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مهندسی کامپیوتر به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI هوش مصنوعی به زبان انگلیسیسال انتشار

مقاله انگلیسی رایگان در مورد رویکرد فشرده سازی اطلاعات اینترنت اشیا – الزویر ۲۰۱۹

 

مشخصات مقاله
ترجمه عنوان مقاله یک رویکرد فشرده سازی اطلاعات اینترنت اشیای موثر انرژی در یادگیری ماشین لبه ای
عنوان انگلیسی مقاله An energy efficient IoT data compression approach for edge machine learning
انتشار مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی  ۳۰ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۷٫۰۰۷ در سال ۲۰۱۸
شاخص H_index ۹۳ در سال ۲۰۱۹
شاخص SJR ۰٫۸۳۵ در سال ۲۰۱۸
شناسه ISSN ۰۱۶۷-۷۳۹X
شاخص Quartile (چارک) Q1 در سال ۲۰۱۸
رشته های مرتبط مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط  هوش مصنوعی، اینترنت و شبکه های گسترده
نوع ارائه مقاله
ژورنال
مجله / کنفرانس  سیستم های کامپیوتری نسل آینده-Future Generation Computer Systems
دانشگاه  FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comt´e, France
کلمات کلیدی  اینترنت اشیا، رایانش لبه ای، فشرده سازی اطلاعات، یادگیری ماشین، راندمان انرژی، تشخیص تنش
کلمات کلیدی انگلیسی IoT, Edge computing, Data compression, Machine learning, Energy efficiency, Stress detection
شناسه دیجیتال – doi
https://doi.org/10.1016/j.future.2019.02.005
کد محصول  E12068
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
۱٫ Introduction
۲٫ Related work
۳٫ Error-bounded lossy compression
۴٫ Case study
۵٫ Experimental results and analysis
۶٫ Discussion
۷٫ Conclusion
Acknowledgment
References

 

بخشی از متن مقاله:
Abstract

Many IoT systems generate a huge and varied amount of data that need to be processed and responded to in a very short time. One of the major challenges is the high energy consumption due to the transmission of data to the cloud. Edge computing allows the workload to be offloaded from the cloud at a location closer to the source of data that need to be processed while saving time, improving privacy, and reducing network traffic. In this paper, we propose an energy efficient approach for IoT data collection and analysis. First of all, we apply a fast error-bounded lossy compressor on the collected data prior to transmission, that is considered to be the greatest consumer of energy in an IoT device. In a second phase, we rebuild the transmitted data on an edge node and process it using supervised deep learning techniques. To validate our approach, we consider the context of driving behavior monitoring in intelligent vehicle systems where vital signs data are collected from the driver using a Wireless Body Sensor Network (WBSN) and wearable devices and sent to an edge node for stress level detection. The experimentation results show that the amount of transmitted data has been reduced by up to 103 times without affecting the quality of medical data and driver stress level prediction accuracy.

Introduction

Cloud computing that is centrally deployed on a global scale has become an indispensable part of processing IoT data. However, cloud-assisted Internet of things (CoT) faces several difficulties such as transmission latency, bandwidth constraints, and high energy consumption. For instance, sending a single bit of data over the cellular network consumes a lot of energy which decreases the lifetime of the IoT system. On the other hand, edge computing has emerged as a promising paradigm that pushes the cloud services to the edge of the network. It can be seen as a decentralized cloud that drives the computing power closer to the source of data and allows local decision making. Edge computing was shown to be a better solution than the cloud in numerous IoT applications [1]. For instance, applications that demand near real-time responses such as autonomous driving cars and eHealth can not work properly with the cloud due to the high latency and ineffective bandwidth caused by the large number of sensors connected to the network. Wireless Sensor Networks (WSNs), Wireless Body Sensor Networks (WBSNs), and wearable devices make up the essential blocks of IoT architectures. Many of these smart objects, that are responsible for the collection, processing, and transmission of data, are still battery operated and resource constrained. The three major constituents of a smart object that consume energy are the microcontroller (MCU), transceiver, and sensor units. Among all tasks, it is well known that data transmission is the highest energy-consuming task in IoT nodes [2] [3]. An important step towards energy efficiency in IoT applications is the transfer of computational tasks from the cloud to the edge. In general, the radio communication task between the IoT nodes and the edge consumes less energy than transmitting the data directly to the cloud over the cellular network [1] [4].

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا