مشخصات مقاله | |
ترجمه عنوان مقاله | فیلترسازی کالمن بدون بو قوی با تشخیص خطای اندازه گیری برای یکپارچه سازی محکم سیستم جهت یابی اینرسی / سیستم ماهواره ای جهت یابی جهانی (INS/GNSS) جفت شده در جهت یابی حاملان فراصوتی |
عنوان انگلیسی مقاله | Robust Unscented Kalman Filtering With Measurement Error Detection for Tightly Coupled INS/GNSS Integration in Hypersonic Vehicle Navigation |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 13 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.641 در سال 2018 |
شاخص H_index | 56 در سال 2019 |
شاخص SJR | 0.609 در سال 2018 |
شناسه ISSN | 2169-3536 |
شاخص Quartile (چارک) | Q2 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | معماری سیستم های کامپیوتری |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | School of Automation, Northwestern Polytechnical University, Xi’an 710072, China |
کلمات کلیدی | یکپارچه سازی سیستم جهت یابی اینرسی / سیستم ماهواره ای جهت یابی جهانی (INS/GNSS)، فیلتر کالمن بدون بو قوی، خطاهای اندازه گیری، جهت یابی حاملان فراصوتی |
کلمات کلیدی انگلیسی | INS/GNSS integration, robust unscented Kalman filter, measurement errors, hypersonic vehicle navigation |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2948317 |
کد محصول | E13884 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I. Introduction II. Tightly Coupled INS/GNSS Integration III. Innovation Orthogonality Based Robust UKF IV. Simulations and Results V. Conclusion Authors Figures References |
بخشی از متن مقاله: |
Abstract
Due to the high maneuverability of a hypersonic vehicle, the measurements for tightly coupled INS/GNSS (inertial navigation system/global navigation satellite system) integration system inevitably involve errors. The typical measurement errors include outliers in pseudorange observations and non-Gaussian noise distribution. This paper focuses on the nonlinear state estimation problem in hypersonic vehicle navigation. It presents a new innovation orthogonality-based robust unscented Kalman filter (IO-RUKF) to resist the disturbance of measurement errors on navigation performance. This IO-RUKF detects measurement errors by use of the hypothesis test theory. Subsequently, it introduces a defined robust factor to inflate the covariance of predicted measurement and further rescale the Kalman gain such that the measurements in error are less weighted to ensure the filtering robustness against measurement errors. The proposed IO-RUKF can not only correct the UKF sensitivity to measurement errors, but also avoids the loss of accuracy for state estimation in the absence of measurement errors. The efficacy and superiority of the proposed IO-RUKF have been verified through simulations and comparison analysis. Introduction Hypersonic vehicle refers to a vehicle at the speed of Mach 5 or above. Due to the merits such as large flight envelope, high maneuverability and speedy global reach, hypersonic vehicle has received great attention in the recent years in both aeronautic and astronautic fields for various civil and military applications [1], [2]. As the ‘‘eye’’ of a hypersonic vehicle, the navigation system is the primary element of the overall vehicle flight control system (navigation, guidance and control system). The position, speed and attitude information provided by the navigation system is directly related to the accuracy and reliability of the vehicle guidance and control loop [3]. Nowadays, the INS/GNSS (inertial navigation system/global navigation satellite system) integration has been a widely used navigation technique for hypersonic vehicles [4], [5]. The integration of INS and GNSS overcomes the limitations of both standalone systems, i.e., the growth of navigation errors with time for INS as well as the typical low update rate of GNSS measurements. Thus, it can provide a superior performance comparing to either INS or GNSS [6]–[8]. The integration of INS and GNSS can be classified into two categories [9]–[11]. One is the loosely coupled integration which employ the velocity and position estimations solved by GNSS to assist INS. This method is simple in principle and easy to implement. However, the number of observable GNSS satellites frequently drops to below four due to high maneuverability, leading to the poor stability and reliability. |