مشخصات مقاله | |
ترجمه عنوان مقاله | ریز ساختار و ساختار هیدراسیون اولیه آلیاژ TiFe با Zr و Mn به عنوان افزودنی ها |
عنوان انگلیسی مقاله | Microstructure and first hydrogenation properties of TiFe alloy with Zr and Mn as additives |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 11 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.216 در سال 2019 |
شاخص H_index | 187 در سال 2020 |
شاخص SJR | 1.100 در سال 2019 |
شناسه ISSN | 0360-3199 |
شاخص Quartile (چارک) | Q2 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | شیمی، مهندسی مواد |
گرایش های مرتبط | شیمی معدنی، شیمی آلی، مهندسی فرایند، شکل دادن فلزات |
نوع ارائه مقاله |
ژورنال |
مجله | مجله بین المللی انرژی هیدروژن – International Journal of Hydrogen Energy |
دانشگاه | Indian Institute of Technology Bombay, Mumbai, India |
کلمات کلیدی | آلیاژ TiFe، ساختار شناسی، سینتیک فعال سازی، ذخیره هیدروژن |
کلمات کلیدی انگلیسی | TiFe alloy, Morphology, Activation kinetics, Hydrogen storage |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.ijhydene.2019.10.239 |
کد محصول | E14178 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
Introduction Result and discussion Conclusion Acknowledgment Appendix A. Supplementary data Research Data References |
بخشی از متن مقاله: |
Abstract In this paper, the effect of Zr and Mn on the microstructure and first hydrogenation kinetic of TiFe alloy is reported. TiFe alloy to which Zr, Mn or a combination of both have been added were synthesized by induction melting. First hydrogenation of all alloys was performed at room temperature under 20 bar of hydrogen. We found that addition of manganese makes possible activation at room temperature, but kinetics was very sluggish. Alloy with 2 wt% Zr did not absorb hydrogen. However, with addition of 4 wt% Zr, the alloy absorbed 1.2 wt% of hydrogen. A synergetic effect was found when zirconium was added along with manganese. Alloy with 1 wt% Mn and 2 wt% Zr had better kinetics than the alloy having only Mn or only Zr. The maximum hydrogen capacity was also greater at ~1.8 wt% after 7 h. Combination of 4 wt% Zr and 2 wt% Mn absorbed 2 wt% of hydrogen in 5 h. The rate limiting step for each activated alloy was found to be diffusion controlled with decreasing interface velocity. Introduction Emission of greenhouse gases due to the intensive use of fossils fuel demands the development of alternative fuels [1,2]. Hydrogen fulfills the criteria as an alternative energy carrier due to its high energy density, availability and less impact on the environment when produced by renewable resources such as solar and wind energies [3,4]. One of the major challenges in the development of hydrogen economy is to store hydrogen safely and at low cost [5]. The solid-state hydrogen storage in metal hydrides presents some advantages over the conventional high-pressure cylinders and liquid hydrogen because of its high volumetric capacity, low pressure, and low temperature of operation [6e10]. Metal hydrides can also be used as a negative electrode in rechargeable batteries such as Ni-MH [11e13]. Two of the major characteristics of metal hydrides should have in order to fulfill the requirements for mobile and stationary applications are low cost and utilization in a practical range of temperature and pressure (0e100 C, 1e10 atm) [14e16]. |