مشخصات مقاله | |
ترجمه عنوان مقاله | مدل ترکیبی از اثرات گاوسی معکوس تو در تو برای داده های طولی |
عنوان انگلیسی مقاله | Nested Inverse Gaussian Mixed-Effects Model for Longitudinal Data |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 5 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.257 در سال 2018 |
شاخص H_index | 47 در سال 2019 |
شاخص SJR | 0.281 در سال 2018 |
شناسه ISSN | 1877-0509 |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | آمار، ریاضی |
گرایش های مرتبط | آمار ریاضی، آنالیز عددی |
نوع ارائه مقاله |
ژورنال و کنفرانس |
مجله / کنفرانس | علوم کامپیوتر پروسیدیا – Procedia Computer Science |
دانشگاه | School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, P.R. of China |
کلمات کلیدی | معادله برآوردی، داده های منحرف به راست، خانواده Tweedie ، اثرات تصادفی، ساختارهای لحظه ای |
کلمات کلیدی انگلیسی | Estimating equation; Right-skewed data; Tweedie family; Random effects; Moment structures |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.procs.2019.06.089 |
کد محصول | E12350 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1. Introduction 2. Inverse Gaussian Mixed-Effects Model 3. Estimating Model Parameters 4. Framingham Cholesterol Data 5. Conclusion Acknowledgements References |
بخشی از متن مقاله: |
Abstract
Following [7], we introduce the nested Inverse Gaussian Mixed-Effects model to analyze right-skewed and continuous longitudinal data. The nested random effects don’t follow a specific parameter distribution and rely only on the first two moments assumptions in our model. We apply the truly orthodox best linear unbiased predictor (BLUP) approach to estimate the nested random effects. We derive an optimal estimating equation for the regression parameters under the case of known BLUP of random effects. A real example for Framingham cholesterol data is presented to illustrate our proposed methodology. Introduction Skewed continuous longitudinal data frequently appear in many areas of research. Various skew normal models have been proposed to analyze skewed longitudinal data in recent years. For example, [5] for linear mixed models by substituting the skew-normal assumption of random effects for the normal assumption; [9] for Bayesian partial linear model; [1] for Skew-normal antedependence models; [8] for mixed effects model with the skew-normal and skew-t assumption of the distribution of responses and random effects. However, these approaches are generally computationally intensive. The inverse Gaussian regression model is a powerful method for analyzing right-skewed continuous data. Following [6] and [7], we consider a class of nested Inverse Gaussian Mixed-Effects Model for right-skewed and continuous longitudinal data. [7] introduced the nested Tweedie mixed model based on an orthodox BLUP approach. Similarly, this orthodox BLUP approach to our models is still computationally simple and efficient. In addition, our approach consolidates conditional and marginal modeling interpretations. |