مشخصات مقاله | |
ترجمه عنوان مقاله | بهینه سازی مناطق مدیریت پسماند با استفاده از چند ضلعی های Thiessen بازگشتی |
عنوان انگلیسی مقاله | Optimization of waste management regions using recursive Thiessen polygons |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 12 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
7.096 در سال 2018 |
شاخص H_index | 150 در سال 2019 |
شاخص SJR | 1.620 در سال 2018 |
شناسه ISSN | 0959-6526 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی محیط زیست |
گرایش های مرتبط | بازیافت و مدیریت پسماند |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | مجله تولید پاک – Journal of Cleaner Production |
دانشگاه | Environmental Systems Engineering, University of Regina, Saskatchewan, S4S 0A2, Canada |
کلمات کلیدی | بهینه سازی موزاییک کاری، مدیریت پسماند کانادا، سیستم های اطلاعات جغرافیایی، مدیریت پسماند منطقه ای، چند ضلعی های Thiessen |
کلمات کلیدی انگلیسی | Tessellation optimization، Canadian waste management، Geographic information systems، Regionalized waste management، Thiessen polygons |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jclepro.2019.06.178 |
کد محصول | E12769 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract Graphical abstract 1. Introduction & literature review 2. Methodology & materials 3. Results & discussion 4. Conclusions Declarations of interest Acknowledgements References |
بخشی از متن مقاله: |
Abstract
Geographic Information Systems (GIS) are commonly employed to solve problems related to landfill siting and optimization of waste collection. This research aims to develop an easily implementable tool to optimize the topology of waste management regions in various Canadian jurisdictions using ArcGIS ModelBuilder. Landfill count, populated places, and road length are minimized using standard deviation to determine optimized tessellations. In Nova Scotia, reductions in standard deviation of 9.6e30.4% are observed between original and optimized tessellations. The results suggest that an optimized tessellation of Nova Scotia’s Federal subdivisions may perform better than that of their waste management regions. In Saskatchewan, reductions in standard deviation of 4.9e46.1% were observed between original and optimized tessellations. Considering all Saskatchewan Federal Subdivisions, no optimization occurred. However, partitions of Saskatchewan Federal Subdivisions yielded better results, with vertical partitions yielding a 30% decrease in standard deviation of roads, while landfills and population were reduced in the horizontal subdivision by 20.0% and 38.0%, respectively. This suggests that a different approach may be required for waste management regions in Northern Saskatchewan. Saskatchewan transportation planning committees regions had the highest standard deviation across all parameters, and optimized at the fourth iteration (landfills and populated places), and first iterations (roads), despite the fact that this tessellation was developed in direct relation to roads in the province. The proposed tool, however, showed a limited application in the City of Regina given that land use planning within City limits. This work will improve the data driven aspect of regional waste management system design. Introduction & literature review Waste collection and transportation constitutes a large fraction of total municipal solid waste management budgets worldwide (Chalkias and Lasaridi, 2009; Richter et al., 2018; Rathore and Sarmah, 2019). Waste collection and transportation cost of a given waste management system to a large degree depends on the distance between generation and disposal sites, and thus optimization of shape and size of a waste management region (WMR) is vital in reducing total operation cost. In Athens, Greece, costs for the collection and transportation of waste may account for more than 70% of total waste management costs (Chalkias and Lasaridi, 2009). In Bilaspur, India, collection and transportation account for 50e70% of total waste management costs (Rathore and Sarmah, 2019). Richter et al. (2018) found that Canadians spent about 46% of local waste management budgets on the collection and transportation of waste. Canadians have one of the highest waste generation rates in the world and send a majority of their waste to landfills for permanent disposal (Bruce et al., 2016; Wang et al., 2016; Richter et al., 2019). Despite the size of the country and its mediocre performance in waste diversion (Bruce et al., 2016; Wang et al., 2016; Pan et al., 2018), there is little published information on waste management systems in Canada (Lakhan, 2015; Zhu and Huang, 2017; Chowdhury et al., 2017; Richter et al., 2017, 2018). Fig. 1 shows the expenditure on collection and transportation at the local level in Nova Scotia (NS), Saskatchewan (SK), and Canada (CA). Nova Scotia is a leading Canadian province in waste diversion (Richter et al., 2017, 2018), whereas Saskatchewan ranks as at the bottom (Wang et al., 2016). Over time, there has been a steady increase in the cost of collection and transportation provincially and nationally. |