مشخصات مقاله | |
ترجمه عنوان مقاله | طبقه بندی تصویر ابر طیفی نیمه نظارت شده با استفاده از اطلاعات مکانی و طیفی و ویژگی های نمای افقی |
عنوان انگلیسی مقاله | Semisupervised Hyperspectral Image Classification Using Spatial-Spectral Information and Landscape Features |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 18 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.641 در سال 2018 |
شاخص H_index | 56 در سال 2019 |
شاخص SJR | 0.609 در سال 2018 |
شناسه ISSN | 2169-3536 |
شاخص Quartile (چارک) | Q2 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم و محاسبات |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China |
کلمات کلیدی | طبقه بندی تصویر ابر طیفی، ویژگی های نمای افقی، اطلاعات مکانی و طیفی، یادگیری نیمه نظارت شده |
کلمات کلیدی انگلیسی | Hyperspectral image classification, landscape features, spatial-spectral information, semisupervised learning |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2946220 |
کد محصول | E13847 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I. Introduction II. Related Work III. Proposed Methodology IV. Dataset Description and Design of Experiment V. Results and Analysis Authors Figures References |
بخشی از متن مقاله: |
Abstract
In hyperspectral image classification, the foremost task is that: how can we apply limited labeled samples to achieve good classification results? Spatial–spectral classification methods, which assign a label to each pixel regarding both spatial and spectral information, are effective to improve classification performance. Moreover, semisupervised learning (SSL) focuses on the scenario that the number of labeled data is rather small while a large number of unlabeled data are available. To complement spatial–spectral classification methods and semisupervised learning for each other, we propose a novel learning landscape features semisupervised framework (LLFSF) based on M-training algorithm and weighted spatial-spectral double layer SVM classifiers module (WSS-DSVM). In this novel framework, we first propose a SLIC (simple linear iterative clustering) based non-local superpixel segmentation algorithm to initially learn landscape feature and spatial composition. Then, we apply WSS-DSVM module to obtain initial classification maps. To better characterize complex scenes of hyperspectral images, we quantizes both the landscape diversity and separability from the initial classification map, which increase availability of spatial details and structural information of objects. Finally, we put some patches with lower accuracy into Multiple-training algorithm for further classification. In order to achieve an unbiased evaluation, we have evaluated the performance of LLFSF on three different scene hyperspectral data sets and compare it with that of three state-of-the-art hyperspectral image classification methods. The experimental results confirm the efficacy of the proposed framework. Introduction Recently, in pace with the rapid development of imaging technology, hyperspectral imagery can obtain a large amount of information about an object via hundreds of contiguous and narrow spectral bands. Hyperspectral imagery (HSI) has emerged as a significant data in a variety of scientific fields, including medical imaging [1], chemical analysis [2], and remote sensing [3], agricultural monitoring [4], ecosystem monitoring [5] and endmember extraction [6]. The crucial component in these applications is classification. The classification techniques are divided into supervised classification algorithms and unsupervised classification algorithms based on whether a prior knowledge is needed. Some conventional supervised classifiers can obtain satisfactory classification results, such as support vector machines [7], [8], neural networks [9], [10] and regression methods [11]. Recently, as the supervised models, deep learning networks have attracted much attention, due to the fact that the advantages of deep learning models. Firstly, the fundamental philosophy of deep learning is that let the trained model itself select more important features with fewer constraints imposed by human experts. |