مشخصات مقاله | |
ترجمه عنوان مقاله | مروری بر روش های تقسیم توان، تثبیت و ترمیم ولتاژ در میکروگریدهای DC کنترل شده سلسله مراتبی |
عنوان انگلیسی مقاله | Review of Power Sharing, Voltage Restoration and Stabilization Techniques in Hierarchical Controlled DC Microgrids |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 22 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله مروری (Review Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.641 در سال 2018 |
شاخص H_index | 56 در سال 2019 |
شاخص SJR | 0.609 در سال 2018 |
شناسه ISSN | 2169-3536 |
شاخص Quartile (چارک) | Q2 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی برق |
گرایش های مرتبط | مهندسی الکترونیک |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
کلمات کلیدی | میکروگرید DC، کنترل سستی غیرخطی، سیستم چند عاملی، کنترل جمعی، تأخیر ارتباطی، بار توان ثابت، کنترل سلسله مراتبی |
کلمات کلیدی انگلیسی | DC microgrid, nonlinear droop control, multi-agent system, consensus control, communication delay, constant power load, hierarchical control |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2946706 |
کد محصول | E13856 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
ABSTRACT
I. INTRODUCTION II. PRIMARY CONTROL STRATEGY OF DC MICROGRIDS III. UPPER-LEVEL CONTROL STRATEGY FOR DC MICROGRIDS IV. LOAD STABILITY ANALYSIS IN THE DC MICROGRIDS V. CONCLUSION AND PROSPECTS REFERENCES |
بخشی از متن مقاله: |
ABSTRACT
In order to overcome the problem of power generation in distributed energy, microgrid(MG) emerges as an alternative scheme. Compared with the ac microgrids, the dc microgrids have the advantages of high system efficiency, good power quality, low cost, and simple control. However, due to the complexity of the distributed generation system, the conventional droop control shows the drawbacks of low current sharing accuracy. Therefore, the improved primary control methods to enhance current sharing accuracy are systematically reviewed, such as particle swarm optimization programming, probabilistic algorithm and voltage correction factor scheme. However, it is difficult to achieve stable and coordinated operation of the dc microgrids by relying on the primary control. Hence, the various secondary control approaches, such as dynamic current sharing scheme, muti-agent system (MAS) control and virtual voltage control methods have been summarized for voltage regulation. Furthermore, the energy management system (EMS), modular-based energy router (MBER) and other coordinated control methods are reviewed to achieve power management. Besides, various control methods to compensate the effect of communication delay are summarized. Moreover, linear matrix inequality (LMI), Lyapunov-Krasovskii functional stability and Takagi–Sugeno model prediction scheme can be adopted to eliminate the influence of communication delay. In addition, due to the constant power loads (CPL) exhibit negative impedance characteristics, which may result in the output oscillation of filter. Thus, various control approaches have been reviewed to match the impedance, such as the nonlinear disturbance observer (NDO) feedforward compensation method, linear programming algorithm, hybrid potential theory and linear system analysis of polyhedral uncertainty. The merits and drawbacks of those control strategies are compared in this paper. Finally, the future research trends of hierarchical control and stability in dc microgrids and dc microgrid clusters are also presented. INTRODUCTION In recent years, in order to solve the problem of environmental pollution and reduce the demand of fossil fuels for conventional power generation, distributed generation (DGs) including renewable energy (RES) and energy storage systems (ESS) have been widely developed [1], [2]. Moreover, to coordinate the contradiction between the conventional grid and the DG units, while exploiting the advantages of the distributed power source, the concept of the microgrid (MG) have emerged at the beginning of this century [3]. MG can be divided into dc MG and ac MG, compared to ac MG, dc MG possesses the advantages of high efficiency, more natural interface with various RES and ESS, and in compatible with the requirements of consumer electronic products, thus dc MG has been widely applied [4]. Furthermore, dc MG can be adopted to renewable energy (photovoltaic arrays, wind turbines, etc.), aerospace equipment, ship electrical systems, energy storage equipment, electric vehicles, data centers, telecommunication systems [5]–[9]. In addition, when components are coupled around a dc bus, there are no issues with reactive power flow and frequency adjustment [10]–[12]. Therefore, dc MGs are increasingly attracting considerable attention. |