مشخصات مقاله | |
ترجمه عنوان مقاله | مطالعه عملکرد انتقال حرارت مبدل حرارتی پی شمعی زمین گرمایی با پیکربندی لوله 3-U |
عنوان انگلیسی مقاله | Study on heat transfer performance of geothermal pile-foundation heat exchanger with 3-U pipe configuration |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 13 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.906 در سال 2018 |
شاخص H_index | 177 در سال 2019 |
شاخص SJR | 1.624 در سال 2018 |
شناسه ISSN | 0017-9310 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی مکانیک |
گرایش های مرتبط | تبدیل انرژی، تاسیسات حرارتی و برودتی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | مجله بین المللی انتقال حرارت و جرم – International Journal of Heat and Mass Transfer |
دانشگاه | School of Energy and Environment, Southeast University, Nanjing, PR China |
کلمات کلیدی | پمپ حرارت منبع زمینی، مبدل حرارتی پی شمعی، گروه مبدل حرارتی، عملکرد انتقال حرارت، شبیه سازی عددی، آزمایش |
کلمات کلیدی انگلیسی | Ground source heat pump، Pile-foundation heat exchanger، Heat exchanger group، Heat transfer performance، Numerical simulation، Experiment |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119020 |
کد محصول | E14128 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Simulation models and methods 3. Results and discussion 4. Conclusions Declaration of Competing Interest Acknowledgments Appendix. Supplementary materials Research Data References |
بخشی از متن مقاله: |
Abstract
Targeting the heat transfer performance of geothermal pile-foundation heat exchanger in ground source heat pump system (GSHP), the physical models of 3-U pile-foundation heat exchanger and heat exchanger group were established. CFD software was used to simulate heat transfer processes and heat transfer performance was analyzed both in cooling and heating mode. The simulation results indicated that the higher thermal conductivity of pile-foundation heat exchanger contributed to the higher heat transfer efficiency than soil. Heat transfer flux per meter of the pile-foundation heat exchanger gradually decreased with time went on. After operating for ten years, the average soil temperature increased by 2.96 K in non-equilibrium condition and decreased by 0.61 K in equilibrium condition. The equilibrium condition of cooling and heating load was beneficial to operation system’s safety and efficiency. The experimental values of temperature differences were 2.2 K, 2.5 K and 3.5 K, and the heat transfer flux were stable at 58.1 W·m − 1, 65.9 W·m − 1 and 46.2 W·m − 1 in three schemes separately. The maximum difference value was 8.4% for temperature difference between experiment and simulation. The simulation results corresponded well with experimental data, indicating the reliability of simulation. The study results were approximate to the actual situation and can be used as theoretical basis for design and application of pile-foundation heat exchanger in GSHP system. Introduction With the development of society and improvement of people’s living standards, energy consumption has been growing apace. Nowadays, urban heating has been accounting for the largest proportion of the total building energy consumption in China [1]. For the purpose of saving energy and protecting environment, geothermal energy, as one of renewable energies, has attracted increasing interest around the world. One of the main technologies of using geothermal energy is ground source heat pump system (GSHP), which has been widely studied and applied since the early 20th century. In contrast to traditional air conditioning system, GSHP system has a lot of significant advantages. By extracting heat into and injecting heat from soil, GSHP system can operate stably by avoiding the impact of weather changes on system performance, meeting the requirements of sustainable devel-opment strategy. Without material exchanges with atmosphere, the pollution of waste heat, vapor and noise can be reduced. Moreover, GSHP system has a great advantage in investment and maintenance costs [2]. However, the disadvantages of GSHP system cannot be ignored neither. To invest a new system, a large area of land is needed and drilling holes costs additional investment. In 1994, steel pipes in pile foundation were applied to buildings for the first time, and then the concept of pile-foundation heat exchanger was proposed [3]. Consequently, geothermal pile-foundation heat exchangers in GSHP system with pipes laying inside the foundation and fixing via concrete are applied, contributing to declining outlays, saving ground area and reducing thermal interference between heat exchanger [4]. Compared with horizontal pile-foundation heat exchanger, vertical heat exchangers had better performance in heat transfer efficiency and land consumption [5]. |