مشخصات مقاله | |
ترجمه عنوان مقاله | پاسخ سیستمی رسوبات روانگرا |
عنوان انگلیسی مقاله | System response of liquefiable deposits |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 18 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
2.989 در سال 2018 |
شاخص H_index | 78 در سال 2019 |
شاخص SJR | 1.359 در سال 2018 |
شناسه ISSN | 0267-7261 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی عمران |
گرایش های مرتبط | خاک و پی، زلزله |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دینامیک خاک و مهندسی زلزله – Soil Dynamics and Earthquake Engineering |
دانشگاه | University of Canterbury, Civil and Natural Resources Engineering, Private Bag 4800, Christchurch, New Zealand |
کلمات کلیدی | تاریخچه موردی، زلزله، تحلیل تنش موثر، روانگرایی، پاسخ سیستم |
کلمات کلیدی انگلیسی | Case history، Earthquake، Effective stress analysis، Liquefaction، System response |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.soildyn.2018.05.013 |
کد محصول | E13423 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Investigated Christchurch sites 3. Representative soil profiles 4. Effective stress analyses 5. Analyses results for YY-profiles 6. Analyses results for NN-profiles 7. Results from simplified analyses 8. Conclusions Acknowledgements References |
بخشی از متن مقاله: |
Abstract
Detailed geotechnical characterization and in-depth liquefaction assessment using seismic effective stress analyses are presented for 55 liquefaction case histories (sites) from Christchurch. Fifteen of the sites manifested liquefaction in the two major earthquakes during the 2010–2011 Canterbury earthquakes (YY-sites), while 17 sites did not manifest liquefaction in either event (NN-sites). The YY- and NN-sites are shown to have practically identical critical layer characteristics, with low CPT tip resistance (qc1Ncs = 80–86), and shallow location of the critica.l layer at approximately 2 m depth. However, there are significant differences between the YY- and NNsites with regard to their deposit characteristics including the thickness and vertical continuity of their critical zones and liquefiable materials. Effective stress analyses are used to demonstrate key mechanisms of system-response of liquefying deposits that either intensify (for the YY-sites) or mitigate (for the NN-sites) liquefaction manifestation at the ground surface. The study illustrates the need to consider system-response of liquefying soils in the assessment of liquefaction manifestation and severity of liquefaction-induced damage. Introduction Simplified liquefaction triggering procedures used in current engineering practice have been developed based on case histories in which liquefaction was manifested at the ground surface during past earthquakes. Such liquefaction case histories essentially reflect the overall response of soil deposits during earthquakes, and their key characteristics with regard to the severity of liquefaction manifestation. However, despite the intent to capture the overall performance of the deposit at a given site, in the simplified liquefaction evaluation procedures each layer is considered in isolation, and a factor of safety against liquefaction triggering, maximum shear and volumetric strains are estimated separately, and independently, for each layer. In these calculations, interactions between different layers in the dynamic response, and through excess pore water pressures and water flow are ignored. Hence, principal mechanisms of interaction or system-response effects of liquefying deposits that potentially contribute to the severity of liquefaction manifestation are not accounted for in the simplified procedures. Liquefaction damage indices, such as LSN [22] and LPI [14,15] use specific weighting functions to quantify the damage potential of liquefying layers depending on their proximity to the ground surface, but still they do not account for cross-interactions between different layers during the development of liquefaction and post-liquefaction triggering. |