مشخصات مقاله | |
ترجمه عنوان مقاله | توزیع پیچیدگی خطی واریانس 4 با توالی های دوگانه دوره ای 2n |
عنوان انگلیسی مقاله | The 4-Variance Linear Complexity Distribution with 2n-Periodical Binary Sequences |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 11 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.257 در سال 2018 |
شاخص H_index | 47 در سال 2019 |
شاخص SJR | 0.281 در سال 2018 |
شناسه ISSN | 1877-0509 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | الگوریتم و محاسبات |
نوع ارائه مقاله |
ژورنال و کنفرانس |
مجله / کنفرانس | علوم کامپیوتر پروسیدیا – Procedia Computer Science |
دانشگاه | School of Computer Science and Technology, Anhui University of Technology, Ma’anshan, 243032, China |
کلمات کلیدی | توالی دوگانه دوره ای، پیچیدگی خطی، توزیع پیچیدگی خطی واریانس k |
کلمات کلیدی انگلیسی | Periodical binary sequence; linear complexity; k-variance linear complexity distribution |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.procs.2019.06.056 |
کد محصول | E12322 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1. Introduction 2. The main idea of the proposed structural method 3. Calculating Formulas for the 4-Variance Linear Complicacy 4. Conclusions References |
بخشی از متن مقاله: |
Abstract
In this paper, the method of calculating the k-variance linear complexity distribution with 2n-periodical sequences by the Games-Chan algorithm and sieve approach is affirmed for its generality. The main idea of this method is to decompose a binary sequence into some subsequences of critical requirements, hence the issue to find k-variance linear complexity distribution with 2n-periodical sequences becomes a combinatorial problem of these binary subsequences. As a result, we compute the whole calculating formulas on the k-variance linear complexity with 2n-periodical sequences of linear complexity less than 2n for k = 4, 5. With combination of results in the whole calculating formulas on the 3-variance linear complexity with 2n-periodical binary sequences of linear complexity 2n, we completely solve the problem of the calculating function distributions of 4-variance linear complexity with 2n-periodical sequences elegantly, which significantly improves the results in the relating references. Introduction The weight complicacy, as a measure on the linear complicacy of periodical series, was first presented in 1990 [1]. An advanced complicated method, where called as sphere complicacy, was presented by Ding, Xiao and Shan in 1991 [2]. Stamp and Martin [14] defined the k-variance linear complicacy, which is almost the same as the sphere complicacy. Precisely, suppose that s is a periodic series of period N. For any k(0 ≤ k ≤ N ), the k-variance linear complicacy Lk (s) of periodic series s is calculated as the shortest linear complicacy that can be reached when any k or fewer elements of the periodic series are altered in one period. Rueppel [13] obtained the account of 2n -periodical series with fixed linear complicacy L, 0 ≤ L ≤ 2n . When k = 1 and k = 2, Meidl [12] derived the whole calculating formulas on the k-variance linear complicacy with 2n -periodical series with linear complicacy 2n . When k = 2 and k = 3, Zhu and Qi [17] further characterized the whole calculating formulas on the k-variance linear complicacy with 2n – periodical series with linear complicacy 2n − 1. |