مشخصات مقاله | |
ترجمه عنوان مقاله | قابلیت پیش بینی کارآمد نوسانات بازده سهام: نقش نوسانات ضمنی بازار سهام |
عنوان انگلیسی مقاله | Efficient predictability of stock return volatility: The role of stock market implied volatility |
انتشار | مقاله سال 2020 |
تعداد صفحات مقاله انگلیسی | 8 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.373 در سال 2019 |
شاخص H_index | 31 در سال 2020 |
شاخص SJR | 0.552 در سال 2019 |
شناسه ISSN | 1062-9408 |
شاخص Quartile (چارک) | Q2 در سال 2019 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | اقتصاد |
گرایش های مرتبط | اقتصاد مالی |
نوع ارائه مقاله |
ژورنال |
مجله | مجله اقتصاد و دارایی آمریکای شمالی – The North American Journal of Economics and Finance |
دانشگاه | College of Mathematics and Statistics, Changsha University of Science and Technology, Hunan 410114, China |
کلمات کلیدی | نوسانات سهام، نوسانات ضمنی بازار سهام، رگرسیون پیش بینی کننده، عملکرد خارج از نمونه |
کلمات کلیدی انگلیسی | Stock volatility، Stock market implied volatility، Predictive regression، Out-of-sample performance |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.najef.2020.101174 |
کد محصول | E14609 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract JEL Classification 1. Introduction 2. Data and descriptive statistics 3. Methodology 4. Empirical results 5. Robustness tests 6. Conclusions and implication Author contributions Acknowledgements References |
بخشی از متن مقاله: |
Abstract
This study examines the predictability of stock market implied volatility on stock volatility in five developed economies (the US, Japan, Germany, France, and the UK) using monthly volatility data for the period 2000 to 2017. We utilize a simple linear autoregressive model to capture predictive relationships between stock market implied volatility and stock volatility. Our insample results show there exists very significant Granger causality from stock market implied volatility to stock volatility. The out-of-sample results also indicate that stock market implied volatility is significantly more powerful for stock volatility than the oil price volatility in five developed economies. Introduction Stock market volatility is a crucial input for risk management, asset pricing and portfolio management. Therefore, modeling and forecasting stock market volatility remain a hot topic in financial econometrics. To improve the stock market volatility forecasting, some studies have constructed new and powerful predictors or factors. Schwert (1989) finds limited support for links between volatility and macroeconomic predictors, whereas more recent papers such as Christiansen, Schmeling, and Schrimpf (2012), Paye (2012), Engle, Ghysels, and Sohn (2013), Conrad and Loch (2015), and Nonejad (2017), Mohsen and Sujata (2019) arrive at somewhat more encouraging results by constructing the macroeconomic and financial variables. Very recently, Feng, Wang, and Yin (2017) find that oil volatility risk premium (oil VRP) does exhibit statistically and economically significant in-sample and out-of-sample forecasting power for stock market volatility in G7 countries. Wang, Wei, Wu, and Yin (2018) also show that the crude oil volatility is predictive of stock volatility in the short-term from both in-sample and out-ofsample perspectives. In addition, Bašta and Molnár (2018) study the comovement between volatility of the equity market and the oil market, both for implied and realized volatilities by using the wavelets method. |