مقاله انگلیسی رایگان در مورد الگوریتم تشخیص و اصلاح لغزش چرخه – IEEE 2019
مشخصات مقاله | |
ترجمه عنوان مقاله | الگوریتم تشخیص و اصلاح لغزش چرخه چهار فرکانسی در زمان واقعی بر اساس چهار ترکیب خطی انتخاب شده |
عنوان انگلیسی مقاله | Real-Time Quadruple-Frequency Cycle Slip Detection and Repair Algorithm Based on the Four Chosen Linear Combinations |
انتشار | مقاله سال ۲۰۱۹ |
تعداد صفحات مقاله انگلیسی | ۱۴ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۴٫۶۴۱ در سال ۲۰۱۸ |
شاخص H_index | ۵۶ در سال ۲۰۱۹ |
شاخص SJR | ۰٫۶۰۹ در سال ۲۰۱۸ |
شناسه ISSN | ۲۱۶۹-۳۵۳۶ |
شاخص Quartile (چارک) | Q2 در سال ۲۰۱۸ |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی برق |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | College of Electronic Science, National University of Defense Technology, Changsha 410073, China |
کلمات کلیدی | مشاهدات چهار فرکانسی، لغزش چرخه، ترکیب خطی، سیستم ماهواره ای جهت یابی BeiDou، گالیله |
کلمات کلیدی انگلیسی | Quadruple-frequency observations, cycle slip, linear combination, BDS, Galileo |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2949265 |
کد محصول | E13903 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I. Introduction II. Proposed Method III. Data Analysis IV. Conclusion Authors Figures References |
بخشی از متن مقاله: |
Abstract
GNSS is now being speedily expanded to our daily life, but the positioning precision still can hardly meet the demands of many high-precision applications, such as approaching landing system on airports. Due to the development of GNSS, quadruple-frequency signals are now available in China’s BeiDou Navigation Satellite System (BDS) and the European Galileo system, which can contribute to positioning precision. Positioning precision can not be improved obviously by quadruple-frequency carrier phases until cycle slips are detected and repaired. A method using four linear combinations to detect and repair quadruplefrequency cycle slips is proposed in the paper. The choices of the four linear combinations are conducted in cascaded steps in accordance to the cycle slip fixing probability. When the four detection combinations are determined, cycle slips on original carrier phase observations can be uniquely determined. The proposed algorithm has been tested on real 30-second quadruple-frequency static observations of BDS and Galileo and on real 0.05-second quadruple-frequency kinematic observations of BDS and Galileo. Simulated and real cycle slips are tested. The results show that the proposed algorithm can detect and repair cycle slips even for one cycle effectively. Introduction With the completion of the experimental and regional phases, China’s BeiDou Navigation Satellite System (BDS) is being speedily expanded to a global and multifunctional satellite navigation system, BDS-3 [1]. To ensure the smooth transition from BDS-2 to BDS-3, B1I and B3I will continue to be broadcast while B2I will not be retained [2]. At the same time, two new OS (open service) signals, i.e. B1C and B2a, will be broadcast by the BDS-3 satellites [3], [4]. Those four signals are broadcast on four frequencies and can be received by BDS users. In addition, the European Galileo system has broadcasted quadruple-frequency signals, i.e. E1, E5a, E5b and E6, and several researches have been done based on Galileo quadruple-frequency signals [5], [6]. Carrier phase measurements are the important observations for highly accurate positioning because of their high accuracy. Multi-frequency signals can form more linear combinations with small combined noise, small ionospheric delay and long wavelength compared with single-frequency signal, and multi-frequency signals are used in many high precise applications, such as approaching landing system and geodetic measurement applications [7]–[۱۸]. |