مشخصات مقاله | |
ترجمه عنوان مقاله | یک الگوریتم دقیق برای مشکل جابجایی بلوک با یک برنامه چینش |
عنوان انگلیسی مقاله | An exact algorithm for the block relocation problem with a stowage plan |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 15 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.712 در سال 2018 |
شاخص H_index | 226 در سال 2019 |
شاخص SJR | 2.205 در سال 2018 |
شناسه ISSN | 0377-2217 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی برق |
گرایش های مرتبط | مهندسی کنترل |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | مجله اروپایی درباره تحقیقات عملیاتی – European Journal of Operational Research |
دانشگاه | Institute for Liberal Arts and Sciences & Department of Electrical Engineering, Kyoto University, 615–8510 Kyoto, Japan |
کلمات کلیدی | تحقیق عملیاتی در صنعت دریایی، بهینه سازی ترکیبی، مشکل جابجایی بلوک با یک برنامه چینش، الگوریتم انشعاب و محدوده، محدوده های پایین تر |
کلمات کلیدی انگلیسی | OR in maritime industry، Combinatorial optimization، Block relocation problem with a stowage plan، Branch-and-bound algorithm، Lower bounds |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.ejor.2019.06.014 |
کد محصول | E13519 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Literature review 3. Block relocation problem with a stowage plan 4. Notation, definitions, and precedence cycles 5. Lower bounds 6. Exact algorithm 7. Computational experiments 8. Conclusion Appendix A. Brief proofs of dominance rules References |
بخشی از متن مقاله: |
Abstract
In this paper we address an exact algorithm for the block relocation problem with a stowage plan. This problem is an extension of the container (block) relocation problem that aims at minimizing the total number of relocations required for retrieving containers piled up in a container yard. The difference is that a stowage plan in a vessel is given in advance and it is taken into consideration when retrieving containers. More specifically, the retrieval order of containers should be feasible with respect to a given stowage plan. We construct a branch-and-bound algorithm with iterative deepening for unrestricted and restricted variants of this problem. To this end, we propose three lower bounds on the total number of relocations. We also extend dominance rules for the container relocation problem, in order to restrict the search space and improve the search efficiency. The effectiveness of the proposed algorithm is examined by numerical experiments for benchmark instances from the literature. Introduction Container transportation is a major means of maritime freight nowadays, and the number of containers handled in sea ports has been constantly increasing in recent decades. According to the statistics of the United Nations Conference on Trade and Development, the world container port throughput is 752 million TEUs (Twenty-foot Equivalent Units) in 2017, which exhibits a 34% growth from 560 million TEUs in 2010 (UNICTAD, 2018). To handle this many containers properly without causing serious delays, effective operations in sea ports are of crucial importance. Container terminals in sea ports provide temporal storage for connecting different transportation modes: Incoming containers via maritime and land transport are stored temporarily in a storage yard until they are retrieved for further maritime and land transport. Primarily due to space limitation, containers are usually piled up vertically in tiers in the yard. Since cranes can access only the topmost containers, relocations of containers within the yard are inevitable, unless their retrieval order is known in advance and, at the same time, containers are stacked in accordance with the order. Roughly speaking, three types of problems have been studied so far (Caserta, Schwarze, & Voß, 2011a) to reduce un-productive relocations and to achieve a better container handling performance. The stacking problem determines appropriate storage locations of incoming containers using incomplete and often stochastic information of their retrieval order. The pre-marshalling problem and the re-marshalling problem rearrange containers within the yard off-line so that no relocations are necessary when they are actually retrieved. |