دانلود رایگان مقالات الزویر - ساینس دایرکتدانلود رایگان مقاله ISI کلان داده یا بیگ دیتا به زبان انگلیسیدانلود رایگان مقاله ISI محاسبات ابری یا رایانش ابری به زبان انگلیسیدانلود رایگان مقاله ISI معماری سیستم های کامپیوتری به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی کامپیوتر به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مهندسی نرم افزار به زبان انگلیسیدانلود رایگان مقاله ISI نگاشت کاهش MapReduce به زبان انگلیسی

مقاله انگلیسی رایگان در مورد استخراج کلان داده با رایانش موازی: مقایسه روش توزیعی و MapReduce ( الزویر )

 

مشخصات مقاله
عنوان مقاله  Big Data Mining with Parallel Computing: A Comparison of Distributed and MapReduce Methodologies
ترجمه عنوان مقاله  استخراج کلان داده ها با رایانش موازی: مقایسه روش های توزیعی و MapReduce (نگاشت-کاهش)
فرمت مقاله  PDF
نوع مقاله  ISI
سال انتشار  مقاله سال ۲۰۱۵
تعداد صفحات مقاله  ۲۹ صفحه
رشته های مرتبط  مهندسی کامپیوتر
گرایش های مرتبط  معماری سیستم های کامپیوتری، مهندسی نرم افزار و رایانش ابری
مجله  مجله سیستم ها و نرم افزار – Journal of Systems and Software
دانشگاه  گروه مدیریت اطلاعات، دانشگاه مرکزی، تایوان
کلمات کلیدی  داده های بزرگ، داده کاوی، رایانش موازی، توزیعی، رایانش ابری، نگاشت کاهش
کد محصول  ۷۴۴۲
نشریه  نشریه الزویر
لینک مقاله در سایت مرجع  لینک این مقاله در سایت الزویر (ساینس دایرکت) Sciencedirect – Elsevier
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
خرید ترجمه این مقاله خرید ترجمه این مقاله

 

بخشی از متن مقاله:
چکیده

استخراج با داده های بزرگ یا استخراج داده های عظیم به حوزه ی تحقیقاتی فعالی تبدیل شده است. استفاده از روش های رایج و ابزار نرم افزار داده کاوی برای اینکه یک کامپیوتر شخصی بتواند به طور موثر با پایگاه داده های بسیار بزرگ سر و کار داشته باشد، بسیار دشوار است. سکوهای رایانش موازی و ابری به عنوان راه حل بهتری برای استخراج داده های عظیم در نظر گرفته می شوند. مفهوم رایانش موازی بر مبنای تقسیم کردن یک مشکل بزرگ به قسمت های کوچک است و هر یک از این قسمت ها توسط یک پردازنده به طور مجزا انجام می شود. بعلاوه، این فرایندها به طور همزمان در روشی توزیعی و موازی انجام می شوند. دو روش رایج برای حل کردن این مشکل داده های بزرگ وجود دارد. مورد نخست رویه ی توزیعی بر مبنای الگوی موازی سازی داده هاست که یک مجموعه داده بزرگ می تواند به صورت دستی به n زیرمجموعه تقسیم شود و n الگوریتم برای هر n زیرمجموعه اجرا می گردد. نتیجه نهایی می تواند از ترکیبی از خروجی های تولید شده توسط n الگوریتم بدست آید. مورد دوم روند مبتنی بر نگاشت کاهش (MapReduce) در سکوی رایانش ابری است. این روند از فرایندهای نگاشت و کاهش تشکل شده است که مورد قبلی فیلتر کردن و طبقه بندی را انجام می دهد و مورد بعدی عملیات خلاصه را به منظور ایجاد نتیجه نهایی اجرا می کند. در این مقاله، هدف ما مقایسه ی تفاوت های عملکردی بین روش های توزیعی و نگاشت کاهش در پایگاه داده هایی با مقیاس بزرگ در قالب دقت و کارایی است. آزمایشات بر مبنای چهار پایگاه داده با مقیاس بزرگ است که برای مشکلات طبقه بندی داده ها مورد استفاده قرار می گیرند. نتایج حاکی از آن است که عملکردهای طبقه بندی روند مبتنی بر نگاشت کاهش بسیار پایدار هستند و مهم نیست که چند گره کامپیوتر مورد استفاده قرار می گیرد، و بهتر از ماشین منفرد خط مبنا و روندهای توزیعی جز برای پایگاه داده های عدم تعادل طبقه عمل می کند. بعلاوه، روند نگاشت کاهش نیازمند حداقل هزینه محاسباتی برای پردازش مجموعه داده های بزرگ است.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا