دانلود رایگان مقالات امرالد - Emeraldدانلود رایگان مقالات سال 2017دانلود رایگان مقاله ISI اینترنت اشیا به زبان انگلیسیدانلود رایگان مقاله ISI اینترنت و شبکه های گسترده به زبان انگلیسیدانلود رایگان مقاله ISI بلاک چین به زبان انگلیسیدانلود رایگان مقاله ISI رایانش امن به زبان انگلیسیدانلود رایگان مقاله ISI شبکه های کامپیوتری به زبان انگلیسیدانلود رایگان مقاله ISI مهندسی فناوری اطلاعات به زبان انگلیسی سال 2022 و 2023دانلود رایگان مقاله ISI مهندسی کامپیوتر به زبان انگلیسی سال 2022 و 2023سال انتشارمقاله ISI امنیت اطلاعات به زبان انگلیسی

مقاله انگلیسی رایگان در مورد بلاک چین ها به عنوان فعال ساز امنیت در برنامه های IoT – امرالد ۲۰۱۷

 

مشخصات مقاله
انتشار مقاله سال ۲۰۱۷
تعداد صفحات مقاله انگلیسی ۱۲ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
منتشر شده در نشریه امرالد
نوع مقاله ISI
عنوان انگلیسی مقاله Blockchains as security-enabler for industrial IoT-applications
ترجمه عنوان مقاله بلاک چین ها به عنوان فعال ساز امنیت در برنامه های اینترنت اشیا
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مهندسی کامپیوتر، فناوری اطلاعات
گرایش های مرتبط امنیت اطلاعات، رایانش امن، اینترنت و شبکه های گسترده، شبکه های کامپیوتری
مجله مجله آسیا پیسیفیک نوآوری و کارآفرینی – Asia Pacific Journal of Innovation and Entrepreneurship
دانشگاه Hamburg University of Applied Sciences – Hamburg – Germany
کلمات کلیدی بلاک چین، تولید هوشمند، شبکه های سنسور، Oracles، قراردادهای هوشمند، اینترنت اشیا (صنعتی)
کلمات کلیدی انگلیسی Blockchain, Smart production, Sensor networks, Oracles, Smart contracts, (industrial) internet-of-things
کد محصول E7747
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

بخشی از متن مقاله:
۱٫ Introduction

The Internet-of-Things (IoT) currently rules many activities in research and development of mobile and wearable devices. This not only refers to smart phones. According to the analysts IDC, the number of sold smart watches tripled from 7.1 million devices in Q3/2014 to 21.2 million devices in Q3/2014 (Farooqui, 2015). In a 2014 analysis, the ABI Research data estimated the market increase for all wearables from 53.8 million devices in 2013 to 146.2 million sold units in 2015 (J’son and Partners Consulting, 2015) – numbers only representing the private-user market for wearables such as smart watches. Not considered in these numbers are mobile phones, wireless monitored health devices such as insulin pumps, blood pressure and heart rate monitors and many more. The engineering services company Libelium listed more than 50 applications (Libelium Comunicaciones, 2015) for using IoT-devices in a personal, semiprofessional or professional manner. For professional applications, such devices either are referred to as industrial Internet-of-Things (IIoT) or – according to their use-case – as smart metering, smart grid, smart production or smart-X, in general. Such smart-X systems can usually be characterized as networked sensors with communication capabilities – also referred to as a cyber-physical system (CPS) – sending its data for further processing, aggregation and evaluation to a cloud service. As mobile systems are very sensitive on their energy budget – typical capacities for portable LiPo-batteries used in wearable IoT-devices range from 1 to 5,000 mAh – may result in operating times from a few hours for smart phones to several days or few weeks for smart watches. This mainly depends on the processor load, measuring intensity, display operation and wireless transmission rate of a device. The Ragone diagram in Figure 1 shows the operating time of a typical mobile energy supply under full load as diagonal lines. The markers indicate the capacity of typical energy storages. Additionally, on the left-hand axis, the potential additional power as produced from autonomous energy sources is shown. This leads to the conclusion that energy is a very scarce resource for IoT-devices, and needs to be carefully managed. Apart from customer comfort, there are several – especially professional – use cases such as cargo-monitoring in a supply chain, environmental measurements for smart-city applications or long-term ECG monitoring for a patient with a heart disease, requiring very long and reliable operating times. But this increase in usability and customer acceptance often results in a severe lack of device- and data protection, and very insecure systems as additional computational loads have to be reduced to a minimum.

نوشته های مشابه

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا