مقاله انگلیسی رایگان در مورد یادگیری عمیق و نظریه تعادل نقطه ای – الزویر ۲۰۱۷
مشخصات مقاله | |
ترجمه عنوان مقاله | یادگیری عمیق و نظریه تعادل نقطه ای |
عنوان انگلیسی مقاله | Deep learning and punctuated equilibrium theory |
انتشار | مقاله سال ۲۰۱۷ |
تعداد صفحات مقاله انگلیسی | ۱۱ صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
۱٫۴۵۰ در سال ۲۰۱۷ |
شاخص H_index | ۴۱ در سال ۲۰۱۹ |
شاخص SJR | ۰٫۳۰۳ در سال ۲۰۱۷ |
شناسه ISSN | ۱۳۸۹-۰۴۱۷ |
شاخص Quartile (چارک) | Q4 در سال ۲۰۱۷ |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | هوش مصنوعی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | Cognitive Systems Research |
دانشگاه | Bavarian School of Public Policy, Technical University of Munich, Richard-Wagner-Str. 1, D-80333 Munich, Germany |
کلمات کلیدی | یادگیری عمیق، شبکه های عصبی، تعادل نقطه ای، فرایند خط مشی، انتشار بازگشتی |
کلمات کلیدی انگلیسی | Deep learning, Neural networks, Punctuated equilibrium, Policy process, Backpropagation |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.cogsys.2017.02.006 |
کد محصول | E11783 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Outline Abstract ۱٫ Introduction ۲٫ What is deep learning? ۳٫ Policy process as information processing ۴٫ A showcase model: deep learning and the policy process ۵٫ Linking theories of budgetary politics to the politics of attention ۶٫ Advanced deep learning ۷٫ Outlook Appendix A. Additional tables and data References |
بخشی از متن مقاله: |
Abstract Deep learning is associated with the latest success stories in AI. In particular, deep neural networks are applied in increasingly different fields to model complex processes. Interestingly, the underlying algorithm of backpropagation was originally designed for political science models. The theoretical foundations of this approach are very similar to the concept of Punctuated Equilibrium Theory (PET). The article discusses the concept of deep learning and shows parallels to PET. A showcase model demonstrates how deep learning can be used to provide a missing link in the study of the policy process: the connection between attention in the political system (as inputs) and budget shifts (as outputs). Introduction Deep learning is associated with the latest success stories in AI. From autonomous cars to AI beating a Go-master: deep learning is the method of choice to construct machine learning models that are useful in many complex situations. Taking this success-story into account, it seems obvious that political science could profit from this method as well. A whole branch of political science approaches sees the policy process as a kind of cognitive system that transforms political inputs from society into outputs. Punctuated Equilibrium Theory (PET) is a very successful concept in political science that is grounded in the theoretical works of Herbert Simon on bounded rationality (Simon, 1955). What separates this approach from rational choice theories is – amongst others – the understanding of organizations (Jones, 2003). While theories that rely solely on market mechanisms can see organizations only as individuals (maximizing their utility function) or as markets, where individuals meet. In bounded rationality organizations are seen as cooperations of individuals identifying with the organization. In many cases, this makes organizations much more effective than markets, especially because parallel processes can be organized with less information costs. But this makes organizations quite complex, as well. |